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A systematic analysis of renormalization schemes and a general proof of the precise formulation of the

equivalence theorem are given in the Rt gauge for both the SU(2)t. and the SU(2) &&U(1) theories. The

precise formula for the modification factor C ~ is obtained, and a convenient particular scheme in

which Cm~ is exactly unity is proposed. C ~ in other schemes are discussed up to one loop in the heavy

Higgs boson limit.
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Longitudinal weak boson scattering VL VL VL VL (VL
stands for W —or Z ) is one of the most important pro-
cesses to be studied at the Superconducting Super Collid-
er and the CERN Large Hadron Collider. The longitudi-
nal component VLa arises from "eating" the would-be
Goldstone boson p', therefore VLVL VLVL is related to
the scattering of Goldstone bosons, which probes the
mechanism of electroweak symmetry breaking. It is well

known that the relation between the two scattering ampli-
tudes at energy E &)Mw can be described by the
equivalence theorem (ET), which states

T{VL', . . . , VL",4) =T(it/t ', . . . , ittt ",@)+O{Mw/E),
(1)

where 4 denotes other possible physical particles. This
simple relation was given by many authors [I] and was
claimed to hold to all orders in perturbation theory for
any value of the Higgs boson mass mH. Equation (1) is

very useful for calculating T(VL', . . . , VL",4) and has
thus been widely used [2]. However, Yao and Yuan [3],
and Bagger and Schmidt [4], pointed out recently from
more careful examination of loop contributions that, in

general, there should be a modification factor C for each
external Goldstone boson field p", and C&1 beyond the
tree level, i.e., (1) should be modified as

T(VL ~
VL" @)=C"T(it/t"', . . . ,ittt'", @)+O(Mw/E) .

(2)
The formula for C to all orders in perturbation theory
given in Ref. [3] is rather complicated, and the renormal-
ization prescription they suggested for making C=l re-
lies on the explicit calculation of C, so that it is cumber-
some in practical calculation. Since the ET is so useful, it
is of special importance to make this issue clearer and

simplify the expression for C. In this Letter, we will give
a brief account of our recent work [5], including (i) a sys-

tematic analysis of the renormalization schemes in the R~
gauge for both the SU(2)L theory and the SU(2) XU(1)
electroweak theory, (ii) a general proof of the precise for-
mulation of the ET in which a simple formula for C is ob-
tained, and (iii) a proposal for a particular renormaliza-
tion scheme in which C is exactly unity and which is easy
to implement in practical calculations. The details of this

study will be presented in a longer paper [6]. We shall
also show results, explicit up to one loop, for the heavy

Higgs boson decay H WL+WL in some currently used
renormalization schemes which are different from our
particular scheme, and we shall see that in those schemes
C —

1 is, in general, not small and the (-dependent part
in T(ittt", . . . ,ittt'", 4) is generally not O(Mw/E) sup
pressed.

I. Renorrrtalization schemes in the R~ gauge —Con-.
sider the standard model. The Higgs and ghost fields are
denoted by 0, c', c', respectively. We take the R~ gauge
with the gauge fixing term written as

(Fa) 2 Fa —
(gg)

—i/zg Vaa (ga) 1/2 a~g

(3)
where the subscript 0 denotes the bare quantities, and we

have put a free parameter xp in (3) instead of taking it to
be the mass of V„' for generality.

The SU(2)L theory: This is the case of neglecting the
Weinberg angle in the SU(2) XU(1) electroweak theory.
In this case V„' =W„'. We simply take (p =(p, xp =xp, for
a=1,2, 3. The multiplicative renormalization constants
are defined as follows: The renormalization constants for
the physical sector are defined in the same way as in Ref.
[7], while those for the unphysical sector are defined as

Taking the functional derivatives of the generating
equation for Ward-Takahashi (WT) identities [8], we ob-
tain the following identities:

ik" [tD()„„'(k)+gp 'k„k,]+MwpCp(k ) [iD()q,'(k) ixpk„] =0,—

i k"[ iDpq„' (k ) +i xok„]+—Mw p Cp(k ) [IDpt p (k) +

foxed�

] =0, (4)

t'Spab(k) = [1+53(k )][k gpxpMwpCp(k )]bab,
where Dp„„, Dp&„, Dp&&, and Sp,b are, respectively, the bare propagators of the W field, W-p, p field, and ghost field, and
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Co(k )= [1+4~(k )+42(k )]/[I+53(k )], with the 4 s defined in Refs. [5,6] (see also the similar definition in Ref.
[4]). The identities (4) put constraints on the renormalization constants which can be written as

Zg=QgZw, Z =0 ZJ Zy Zg, Z~=OyZwZ~ Co(sub point), Z=Q, [1+63(sub point)]

where A~, 0„, 0&, and 0, are finite constants to be determined by the subtraction conditions.
After renormalization the renormalized C(k ) is

C(k ) (Zw/ZP) ZM Co(k )

We shall see in Sec. II that this C(k ) is directly related to the modification factor in (2).
The physical propagators can be expressed in terms of the proper self-energies:

(6)

iD„„'(k)= g„„ [ —k +Mw —flww(k )]+ " [ —g 'k +Mw —IIww(k )],

iD „'(k)= —ik„[Mw —x'+II (k )], iD '(k) =k —gx' II —(k ), iS,b'(k) =k —gxM —II„-(k ) .

We can see that all the unphysical parts of the physical propagators manifest the same tree-level pole at k =gx'Mw.
Thus the renormalized WT identities become

(rl —M')(rI« —k') —k'(II, +M )'=g '(1 —n, ')[(k' —/~M )' —k'(rI«+2/~II, ) —g'~'rI ]

+ 2|r [(k —gxMw)Mw+ k IIw~+ (xIIww]

0 —
1+ ~2 [k z gMw+gII ],0(

C(k ) =[Mw —IIww+k g '(0( ' —I)]/[Mw+MwII ~+rcM (Qg '0„—1)],

II„=(k' -g~Mw—) Z[I +—~,(k')] [k' g~Mw—n„C(k ')] .

(7)

Equations (7) are instructive for finding renormalization
schemes simplifying the expression for C(k ).

We first take an on-shell scheme in such a way that for
the physical sector we take the usual on-shell scheme
[7,9], and for the unphysical sector we take the following
on-shell conditions:

II~(g~Mw) =IIw, (g~Mw)

=II«(g~M ) =fI„(g~M ) =0. -

We call this scheme I. When g =1, K =Mw, and at one-
loop level, these on-shell conditions reduce to that adopt-
ed in Ref. [7]. In the general R~ gauge, it can be shown

that IIww(gxMw) =0 can be satisfied by adjusting the
parameter Q~

—1; II«(g|cMw) =0 can be satisfied by ad-
justing 0,—1. Then the conditions IIw&(gxMw)
=11„-(gxMw) =0 are guaranteed by the WT identities
provided x =Mw. [For IIw&((|rMw) 0, the condition
x =Mw is needed only beyond one loop. ] The remaining

Z&, Z are then determined by the conventional normaliza-
tion of residues at the pole k =gxMw. After doing this,
the expression for C((xMw) can be greatly simplified,

Mw+ KMw(O( ' —1)
C 4&Mw I»-M~=

Mw+ xMw(0( '0» —1)»-M
=n„]. (8)

fh

Now C((xMw)~, -M is exactly given by a single quan
tity 0 which has already been determined in our renor-
malizarion scheme I itself

Furthermore, from (7), we can propose a particular re-
normalization scheme which makes C(gx'Mw) exactly
unity We shall . call it scheme II. In this scheme we sim-

ply take 0„=1. Then the on-shell condition II«(gxMw)
=0 can be satisfied by adjusting Z&. (In this case the
residue of D«at k =(xMw is not normalized in the con-
ventional way, but this does not aA'ect the physics. ) This
determination of Z& also concerns only the renormaliza-
tion of II&&, so that it is easy and natural to implement.

The SU(2) &U(1) electroweak theory: In the charged
sector, the WT identities for the bare propagators are
also of the form (4) but with much more complicated 6's
[6]. The renormalized C (k ) is C (k ) =(Zw/Z&)'
x Zsr Co (k ). We can still have renormalization
scheme I and scheme II parallel to the two schemes in the
SU(2)L theory, in which

(0» ) ' (x' =Mw), scheme I,
C (g K M (9)

1, scheme II,
where the fl, is the finite constant in Z„[similar to Z„
in (5)].

In the neutral sector, the corresponding formulas are
much more complicated due to mixings. Quite lengthy
analysis and derivation show that [6]

z z (D, ) ' (Ic =Mz), scheme I,Cz &z~zMz ='
1, scheme II, (10)
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(12)

where 0„ is the finite constant in Z„.
II. Precise formulation of equivalence theorem —.The

general proof of ET consists of two parts: (i) Deriving a
Slavnov-Taylor (ST) identity for the gauge fixing func-
tion Fp, (OtFp'(ki) Fp" (k„)@t0)=0; (ii) doing renor-
malization and amputating the external Fo lines to obtain
the scattering amplitude. Since Fp contains both a
k"V„'p(k) term and a pp(k) term, this amplitude can then

give the relation between T(VL', . . . , VL",@) and

T(ip ', . . . , ip'", 4), which is the desired ET. The above
identity has already been proved by Gounaris, Kogerler,
and Neufeld [ll. Therefore the crucial thing for obtain-

ing the precise formulation of ET is to do the renormal-
ization and amputation properly. The technique for do-

ing amputation in the SU(2)L theory has been developed
in Ref. [4]. We have generalized it to the more compli-
cated realistic SU(2) && U(1) theory.

The SU(2)L theory: Directly applying the technique in

Ref. [4] we obtain

T(VL', . . . , VL",4)
=(C Od) "T(t'p ', . . . , t'p ",4)+O(Mn/E), (11)

where the modification factor is

C.~ =(M~/M~~ r') C(M~2) .

Here we have considered the possible difference between
the multiplicatively renormalized Mn and the physical
mass (pole of the full physical propagator) Mg"' in some
renormalization schemes. For on-shell schemes, Mg""'
=Mn. Then with Eq. (6), (12) reduces to the
modification factor given in Ref. [3]. However, in our re-
normalization schemes I and II, the formulas for C(Mu )
are greatly simplified, and we obtain

c =(M~/Mg" ')c (M~),

c'.~ =(M /Mg""') c'(M,') .
(14)

In our renormalization schemes I and II, C ~ and Cz~
take the simple forms

(0„) ' (x =Mn, g =1), scheme I,
1 (tc =My/( ), scheme II,

(0, ) ' (~ =Mz, g 1), scheme I,
1 (xz=Mz/( ), scheme II.

To summarize, the precise formulation of ET for
SU(2)t. and SU(2)xU(1) theories is Eq. (11) which

holds to all orders in the gauge couplings with arbitrary
mH. It reduces to (I) only in scheme II. In general C ~
may be significantly different from unity and it may even

contain a large [not of O(Mu/E)] (-dependent piece. As
an example, we consider the amplitude up to one loop of
H WL+WL in various currently used renormalization
schemes other than scheme II. For simplicity, we only
present the results in the heavy Higgs boson limit. In this
case, the H WL+WL decay amplitude for mH= 1 TeV
and g =0.422 [11]is

(0„) ' (a =Mu, (=I), scheme I,
1 (tr =My/(), scheme II.

It can be shown that scheme II is the only renormaliza-
tion scheme that makes C ~ exactly unity [10].

The SU(2) x U(I) electroweak theory: A lengthy
derivation shows that [6] ET in the SU(2) xU(1) theory
is also of the form (11) with

PlT(H~ WL+WL ) = 1+
16m M 16

38 Sn'
8 48

Tp = [1+0.0731]Tp, (16)

where Tp is the tree-level amplitude and only O(g mH/M~) terms are kept in (16).
(i) In the on-shell scheme by Bohm, Hollik, and Spiesberger and by Hollik [7], Z& is chosen to be Z& ZH. For

mH)) Mg,

and

Cw I+ g mH 13 +
16 8

3 mH ( mH——ln + ln
Mw' 4 Mw

T(H-y y ) = — I++ mH 45
16m Mw 16

543 + 5tr

8 48
ln 'Tp,

Mg

where Tp is the same as that in (16). We see that both
Cmod and T(H p+p ) have large (-dependent pieces
and they cancel in the product (C Od) T(H p+p ) up
to one loop. The g-independent part in i (Cm~) T(H

) just coincides with that in (16) as it should
according to (11). Numerically, (Cmod) =1 —0.111
+0.02$, T(H P+P ) = —[I +0.184 —0.02( ]Tp.
We see that (Cm~) —

1 is not small. Therefore, im-
proper use of Eq. (1) in this scheme is apparently inade-
quate. Note that in the longitudinal-8"-boson scattering,
WLWL WLWL, the total modification factor in (11) is

t (C~~) =1 —0.222+0.04(, which is quite diferent
from unity

(ii) In the on-shell scheme in Landau gauge by Marci-
ano and Willenbrock [11], Z& is determined by dH~/
dk t~i p=0. Up to one loop, C ~=1+0(g ), i.e.,
there is neither O(g mH/Mu ) [4] nor O(g ln(mH/
Mu ) ) terms in Cmod. On the other hand, the value of the
obtained i T(H p+p ) with mH =1 TeV coincides
with the right-hand side of (16). Thus this scheme is
convenient in the heavy Higgs boson limit up to one loop.
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(iii) In the on-shell scheme by Aoki et al. [9], the phys-
ical particles are renormalized on-shell, while the unphys-
ical sector is renormalized by the minimal subtrac-
tion scheme. In the heavy Higgs boson limit, up to one
loop, with mtt = I TeV, (Cm~) = I —0.0522+0.02(
and T(H p+p ) = —[1+0.1253 —0.02( ]To, where

(C ~) —I is also not negligible, and i (C ~) T(H
) coincides with (16) as it should since (16) is

scheme independent.
(iv) In the complete minimal subtraction scheme, the

result is the same as that in the on-shell scheme by Aoki
et al. [9]. This is easy to understand since Cm~ is related
only to the renormalization of the unphysical sector.

(v) The intermediate scheme [7] is a widely used

scheme with G„ taken as input instead of Mu. In this
scheme Mg""'AMtr. The renormalization scheme for the
unphysical sector is not specified. If we take the scheme
in Ref. [7] or in Ref. [9] for the unphysical sector, we get
a large C~~ —l. If we take our scheme I for the unphys-
ical sector, we get C Od

= I+0(g ).
Conclusions W.e—have proved that the precise formu-

lation of ET in the R~ gauge in both the SU(2)t. and the
SU(2) && U(l ) theories is of the form (11). The
modification factor C ~ is given by (12) and (14) which

is both renormalization scheme and g dependent. In

scheme I, the expression for C ~ is already determined

by the renormalization scheme I itself. We have also

proposed a particular scheme II in which C ~ is exactly
unity, so that ET is described by the simplest form (I).
Scheme II is easy to implement in practical calculations.

We have also calculated C ~ in other currently used
schemes other than scheme II up to one loop in the heavy

Higgs boson limit. It is shown that the intermediate
scheme with scheme I for the unphysical sector is a con-
venient scheme in which (I ) holds approximately in the

heavy Higgs boson limit. In other schemes, such as the
Bohm-Hollik-Spiesberger scheme [7], etc. , Cmg is signif
icantly diferent from unity even in the heavy Higgs bo
son limit and it even contains a large g depende-nt piece
So, one should be very careful when using ET with these
schemes.
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