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We derive the equations of motion for general strings, i.e. , strings with arbitrary relation between

tension ~ and energy per unit length e. The renormalization of ~ and e that results from averaging
out small scale wiggles on the string is obtained in the general case to lowest order in the amount
of wiggliness. For Nambu-Goto strings we find deviations from the equation of state e~ = const
in higher orders. Finally we argue that wiggliness may radically modify the cosmic gauge string
scenario.

PACS numbers: 98.80.Cq, 11.17.+y

Computer simulations [1] have shown that cosmic
gauge strings acquire much more small scale structure
than had been thought previously [2]. The efFect of small
scale structure is, generally speaking, to increase the en-

ergy per unit length of a gauge string and to decrease its
tension when a coarse grained description of the wiggly
string is adopted [3, 4]. While this fact has been ap-
preciated in the past, it appears that there is no general
treatment yet of the renormalization of string tension and
energy per unit length due to small scale wiggliness. It
appears even that there is no relativistic description in

place for the motion of strings when the tension difFers

from the energy per unit length. The present paper aims
to fill this gap. The formalism developed below can be
applied to all strings and we hope it will prove useful in

other contexts. An example which comes to mind is a
gauge string with fermion zero modes attached to it [5].
When a large number of particles are attached to a string,

they act collectively as a fiuid adding to the energy per
unit length but subtracting from the tension.

Consider then a general string, i.e., an object whose
stress-energy —momentum tensor is localized on a line in

space. Let X"(o ) be the location of the string world sheet
with respect to a Lorentz reference frame. o = (on, crt)
are arbitrarily chosen coordinates parametrizing points
on the world sheet. The associated two-dimensional met-
ric is, as usual,

hab(o)= B',X~BbX„, a, 5 = 0, 1 . (1)

At point X"(o) on the string lives a two-dimensional
stress-energy —momentum tensor

(e —r)u 'tc + rh (2)

where e(o) is the energy per unit length of the string,
7 (o) its tension, and u (o) is the fiuid velocity parallel

I

to the string; u'u, = +1. The four-dimensional stress-
energy —momentum tensor is

T"'(z) = d2o V' h t' (o)B—,X"(~)BbX"(o')6 (z —X(|r)), (3)

where h = det(hob). This exPression is both invariant
i

under two-dimensional reparametrizations and covariant
under four-dimensional Lorentz transformations. Its va-

lidity in the neighborhood of each point on the world
sheet can be verified explicitly by choosing a Lorentz
frame which is instantaneously at rest with respect to
the string at that point. The motion of the string must
be such that B„Ti"(x) = 0. It is easy to show that this
condition is equivalent to

results from arbitrary initial conditions. Note that our
description is Lorentz invariant as well as generally co-
variant in the two-dimensional sense.

The case of the Nambu-Goto (NG) string is included in
this description. The well-known NG equations of motion
are Eq. (4) with tab(o) replaced by hob(o). Let us first
note that two of these equations are merely mathematical
identities since

B [Q—h t (cr)BbX "] = 0 (P = 0 1 2 3) . (4) B,X„B [Q hh (o)BbX"] =—0 (e = 0, 1) (6)

To provide a complete description of the string dynamics,
Eq. (4) must be supplemented by an equation of state:

r=r(e) .

We then have five equations for the five unknowns
X~(o), e(o), r(o), and P(o) = u (o)/u (o). Xi(o)
represents the two transverse degrees of freedom of the
string. P(o) is its longitudinal velocity. Equations (4)
and (5) uniquely specify the motion of the string that

follows from Eq. (1) and nothing else. The other two NG
equations specify the motion of Xi(o). Now, returning
to our description of a general string, let us adopt the
equation of state ~ = e. It is easy to show, using Eqs.
(6), that two of the Eqs. (4) are equivalent to

B r(cr) =0, a=0, 1.
They therefore imply that v must be a constant. The two
remaining Eqs. (4) are the nontrivial NG equations that
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determine the motion of Xi(o). Thus we have learned
that ~ = const is the only consistent way to have ~ = e.

The equation of state appropriate to a particular kind
of string must be derived from the relevant microphysics.
As in other studies of fluid dynamics, an average over
a large number of microcon6gurations consistent with a
given macroscopic description must be performed to ob-
tain the energy per unit length e and the tension ~ of
the string. The equation of state gives the relationship
between e and w when the string is slowly stretched (i.e. ,

the stretching time scale is long compared to the mi-
crophysics time scales). The focus of our paper is the
renormalization of e and ~ due to small scale wiggles on
a string with arbitrary equation of state. We must define
an averaging length scale A =

&
. e(k) and 7(k) are the

values of the energy per unit length and tension of the
string when all wiggles of wavelength shorter than A are
averaged over. We will derive the renormalization group
equations for e and w due to transverse and longitudinal
wiggles to second order in the amplitude of the wiggles.

Consider a string which lies on average along the x
axis. We choose t and x as world-sheet coordinates. Thus
X4(o) = (t, x, y(t, x), z(t, x)). In this gauge, Eqs. (4)
are

~, = eo + 2(e, —~, )(P ), (1la)

7o ='ro —(Eo —7o)(P ) 1+V + (Eo
—7 )o dc

0

(lib)

Thus the promised renormalization group equations for
e(k) and ~(k) are

= Wg (k)e+ 2WL, (k)(e —~),dink
(12a)

d~= 1——WT(k) r+ e+ v E 1 ——
dink 2 L

Next, let us discuss longitudinal wiggles. Again we start
with a string which is at rest, stretched along the x axis.
In this state, it has energy per unit length eo and tension

w, = w(e, ). At time t = 0, the string is given a longi-

tudinal velocity P(0, z) = P, sinkz. Provided Po « 1,
Eqs. (9) are still valid but now y = z = 0. They im-

ply that e, (eo —~o)v ip, and that vi = (—&
~o)'i

is the phase velocity of longitudinal wiggles. For the
renormalization of e and w due to longitudinal wiggles
we find, up to second order in P:

B,(v'-ht' ) = 0,
t BoBby = t BoBbz = 0 .

(8a)

(8b)
dlnv,—W, (k)(e —~) 1+v, + (e —~)

Let us Erst discuss transverse wiggles. Consider a string
of equation of state ~ = ~(~) stretched along the x axis.
At rest (P = y = z = 0) the string has energy per unit
length eo and tension ro = w(eo). At time t = 0, the
string is given a transverse velocity in the y direction:
y(0, z) = pT sin kx. We assume p~ && 1 and expand Eqs.
(8) in powers of P~. This yields to lowest order

e, y' —w, y" = 0,

('o 7o)p = ~oy (y y )+v, e,

(Qa)

(9b)

(9c)

= ~o + ~o((y ) + (z )) (10a)

~~ = 7o —-((y ) + (z )) ~, + c, + v, e,
i

1 ——'
i

To )
(lob)

for the time evolution of y, P, and e, = e —eo. By
definition v—:—

&, ~o. As usual, dots and primes de-
note derivatives with respect to t and x. Equation (9a)
implies y = (P~/ur) sin kxsinut with a = k vT, where

vT = (ui)r~z is the phase velocity of transverse wiggles.
Equations (9b) and (9c) determine e, (o) and P(cr), both
of which are of order y . To obtain the renormalized val-

ues ~T and ~~ of the energy per unit length and tension,
we calculate (T„(x)) to second order in y. The result,
including the contribution from wiggles in the x-z plane,
ls

(12b)

where W~(k) and Wi(k) are the spectral densities on a
ink scale of respectively (y ) + (z ) and (p ). Equations
(12) relate the values of e and 7 at one scale to their values

at a vastly diferent scale provided that W„W (( 1

at all intermediate scales. Note that we have not yet
obtained how the equation of state itself changes from
scale to scale. To do so we need to analyze the response
of the wiggles to adiabatic stretching of the string. We
leave this to a future publication which will also contain
the details of the calculation that led to Eqs. (10)—(12).

Let us consider the case of wiggly Nambu-Goto strings.
At the shortest distance scale ko we have e = ~ = p,
where p, is the bare string tension. At slightly longer dis-

tance scales Eqs. (12) imply e(k) = p[l+W~(k, ) ink, /k]
and ~(k) = p, [1—W~ (k, ) ln k, /k]. Therefore in the neigh-

borhood of k = ko we have the equation of state 67 = p
Moreover, a short calculation shows that Eqs. (12) imply

&&'„"& ——0 when the equation of state is e~ = const. This
equation of state is therefore a fixed point of the renor-
malization group equations (12). Thus in the particu-
lar case of wiggly Nambu-Goto strings, Eqs. (12) do by
themselves establish the equation of state to be e~ = p
in lowest order. (As was already emphasized, for a gen-

eral string the renorrnalization group equations for ~ and
~ do not by themselves provide enough information to de-

termine the equation of state. The Nambu-Goto string
is an exception in this regard. ) The equation of state
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e~ = p was found earlier by Carter [S] and Vilenkin [4]. It seems that we have found considerable support for it.
However, we will now show that in general ev g pz for wiggly Nambu-Goto strings although n = p2 may be an
excellent approximation in many cases. The fact that e7 g p in general does not contradict what we have said so
far because Eqs. (12) are valid only in lowest order.

It is well known that an arbitrary motion of a Nambu-Goto string [6] is given by x(t, o) =
2 [a(o —t) + b(o + t)],

~here a and b are arbitrary functions subject only to the constraint a' = b' = 1. To describe a wiggly NG string
lying on average along the 2: axis we write

a(o —t) = [(o —t)p, + f, (o —t), g, „(o —t), g„(o —t)],

b( +t)=K +t)~, +f.( +t), g.„( +t), g..( +t)1,

where p, and p, are constants and f„ f„g,„, g, , g,„, and g„are functions which average to zero and which
describe the wiggles on the string. These functions are not all independent since they must obey the gauge condition
a'z = b'2 = 1. Let us choose (t, z) as the world-sheet coordinates of the averaged string. It is easy to show that in
these coordinates the two-dimensional stress-energy —momentum tensor of the averaged string is given by

00
'7 + 7 f, (o' —t) + f (rr + t)

~, +~. +f,'(o t)+f-z(~it) '
~, +~. +f,'(~ t)+-f,'(~it)

[p, if', (o —t)][7, if (o it)]t = —2p,
q, +q, + f,'(o —t)+ f,'(o+t)

(14)

Clearly ew = t t +(—to~) P p, in general. For example, consider the particular case where the wiggles are reflection
symmetric on average (p, = p, = p, (f r') = (f,'")—:(f'&) for p = 2, S, . . .). Then an expansion of t'~ in powers of f'
yields

=t"=- 1+,(f")-, .(f")+ .((f")+S(f")')-

(f")+ (f")— ((f")—(f")') + "
2p 4p 8p

Equations (15) show that n. P p,
2 although the second-

and third-order terms in the expansion of e7 —pz vanish.
That the second-order term vanishes, we already knew
from Eqs. (12). In general, one has

—=1+ (f")(f")+"
p2 4p2 1 2

Note that if the wiggles are purely transverse (f,' = f' =
0) then e~ = p to all orders [4]. However, it is clear that
one must allow f,', f,' g 0. Physically this corresponds to
the possibility of longitudinal wiggles once the Nambu-
Goto string has e ) r because of transverse wiggles.

Finally, we would like to speculate on the behavior
of cosmic gauge strings. Let us assume that higher-order
terms in the renormalization group equations (12) do not
play an important role. The equation of state is then
n-= p, and

= WT~+2W,
~

e ——
~

.
de ( p')

(17)dink '( e)
How large are W and W~? At cosmic time t, when
the correlation length of the string network is ((t), the

strings carry wiggles which have been inherited from ear-
lier times when the correlation length was shorter. For
A = ~& somewhat shorter than ((t), wiggles are abun-
dant and the corresponding values of W~ and W~ are
large, of order 1. For A ( Gpt, W~ and W~ are expo-
nentially suppressed because the decay time of wiggles

on the bare string into gravitational radiation is of order

(Gp) ~A [7]. For Gpt ( A ( ((t), the values of W~ and

W, are the outcome of a number of competing processes

[8] some of which tend to increase and some of which tend
to decrease the size of wiggles associated with the corre-
sponding length scales. Stretching of the strings (e.g. , by
Hubble expansion) and the production of loops by self-

intersection with reconnection tend to decrease the size
of wiggles, whereas shortening of the string after recon-
nections have occurred and the production of kinks, also
as a result of reconnections, tend to increase the size of
wiggles. We will assume here that W and W~ have ap-
proximately constant values for all A: Gpt ( A ( ((t).
We make this assumption not because we believe that it
is necessarily correct but as a means to explore the ef-
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(19)

feet of small scale wiggliness on the cosmic gauge string
scenario. With regard to the computer simulations, it is
unclear to us whether they are in disagreement with this
assumption. There is so far no published result describ-
ing unambiguously the spectrum of wiggliness.

At any rate, if Wr and W~ are approximately constant
for Gpt ( A ( ((t), then, from Eq. (17),

2 ((t) ) WT+2WI,

e=e(() = —-~
7. Gpt ) (18)

The typical velocity of cosmic strings is then

r(t) ~ t' Gpt ')

.e(&) . & 4(~) )
One expects the correlation length to be ((t) = v(t)t.
This determines ((t) t(Gp), where n = ~ r++2~

The density of strings today is then given by

A,t, (6vrGt ) (6~)(Gp,)' . (20)('(t)
Because of limits on the anisotropy of the microwave
background radiation, A,t, must be much smaller than
1. This requires e ( 3 or WT + 2W~ ( 0.5. Even if
this condition is satisfied, the limit on Gp, may be much
more severe than it is in the usual scenario which assumes
n = 0. For example, if WT + 2W, = 0.2, 0„,( 10
implies Gp, ( 10 ~ instead of Gp ( 10 in the usual
scenario.
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