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Atomic Interferences and the Topological Phase
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By use of a longitudinal Stern-Gerlach polarization atomic device, we have demonstrated the manifes-
tation of a topological phase for a beam of H*(2s) atoms traveling through a conical magnetic field

configuration.

PACS numbers: 32.60.+i, 07.60.Ly, 42.25.Hz

The experimental and theoretical study of quantal
phase factors has always been a very fascinating subject,
attracting a lot of effort and displaying unexpected
features, as the recent and now famous paper by Berry
[1] showed to the whole community of physicists (there is
considerable literature on the subject now but for a good
review see [2]). Recently, these efforts have culminated,
in the field of atomic physics, with the realization of six
different experiments [3-8]. A short but comprehensive
review of these works can be found in [9]. This allows
studies which were until now only devoted to electron or
neutron interferometers. Because of their great sensitivi-

ty (at thermal velocities, the atomic wavelength is 10
shorter than the optical wavelength in the visible range),
the application of these atomic devices, ranging from fun-
damental tests of physics to more applied ones such as
surface imaging, is very attractive. In this Letter, our
purpose is to report a simple application of these atomic
phase studies, namely, the first direct demonstration of an
atomic topological phase. This has been achieved by us-

ing a longitudinal Stern-Gerlach polarization atomic de-
vice [8,10,11] and a beam of H (2s) atoms traveling
through a conical magnetic field configuration. In its
basic principle, the experiment is close to the one already
performed with neutrons [12] as explained below.

The operation principle of the present longitudinal
Stern-Gerlach device (Fig. 1) has been given in [11]. It
operates with a thermal beam of H (2s) atoms produced
by a 100-eV-electronic bombardment of a thermal beam
of H2 molecules. The resulting time of flight distribution
is well fitted by f(x) x sexp[ —2.5(x —1)] where
x t/tp, rp being the most probable time of flight (the
corresponding velocity is vp 10 km/s) [13]. First an in-
complete polarization of the beam in the hyperfine states
2s&g2, F 1, M 0, 1 is achieved in P by passing the atoms
through a transverse 600-G polarizing magnetic field Bp
(Lamb and Retherford's method [14]). Then a mixer M
produces a coherent superposition of Zeeman states. M
consists of a pair of half-turn coils, the transverse mag-
netic field Bsr(Z) of which (Z is the axis of propagation
of the atoms) reverses abruptly along the flight path of
the atoms. Hence, the evolution in M is not adiabatic
and transitions among the various Zeeman states are in-
duced, giving the desired result. In region %, carefully
shielded from outer magnetic fields, the induced coherent
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FIG. l. (a) Scheme of the experiment. K,A: electron gun;
Bp,z. magnetic fields of the polarizer and the analyzer; C,C':
quasizero field chambers; 0: double helix; S: solenoid; p: mu-
metal shielding; D: detector. (b) Principle of the experiment:
An unpolarized beam (hatched area) is polarized in P; M:
mixer, building a superposition of Zeeman states (one assumes
that spin F 1); %: phase object; M': second mixer (analog to
M); A: analyzer (analog to P); D: detector.

superposition undergoes an evolution through a magnetic
phase object. At the output of R, a second mixer M'
identical to M builds another coherent linear superposi-
tion of states, the amplitudes of which are linear com-
binations of the various phase factors. Then an analyzer
A identical to P (magnetic field B~) filters the outgoing
state. Finally, the population of the filtered state is mea-
sured by a detector D specific to H (2s) [13] and the
signal contains interference terms characteristic of the
chosen phase object.

The external motion of polarized atoms when R con-
sists of a magnetic-field profile of constant direction
(which automatically ensures adiabaticity), the gradients
of which are longitudinal, has been investigated in [11].
The longitudinal forces acting on the atoms in % make
each individual atomic wave packet split longitudinally.
As the net momentum transfer is zero for each Zeeman
state, this longitudinal spatial splitting remains per-
manent beyond %. It is proportional to the integral over
Z of the magnetic profile and gives rise to the atomic in-
terferences pattern. Note also that it forbids a classical
description of the external motion since, for example,
there are as many velocities as there are Zeeman states.
In other words, one has to recall that when, as usual, one
writes Z vt, v is in fact an operator [15].

In the present study, the phase object in R is simply a
conical magnetic-field configuration. It is realized by the
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FIG. 2. (a} Cone followed by the total magnetic field B, sum

of B» (helix) and Br (solenoid), in region R. ti is the solid an-

gle of the cone. (b) The effective field B,a (see text).
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superposition of two magnetic fields: that of a solenoid of
axis Z (radius 6 mm, length 50 mm) B[J(Z) and that of a
double right-handed helix of axis Z (radius 6 mm, length
60 mm) BH(Z). Hence the H (2s) atoms on their flight
along Z see a conical magnetic field B(Z) =Bi(Z)
+Btt(Z) rotating by 2rr over L 60 inm [Fig. 2(a)].
The production of the H (2s) beam being continuous, all

atomic velocities participate in the signal. The resulting
population in the detector D versus the current iH in the
helix has been measured for various fixed values of the
current i~~ in the solenoid. The polarizing and analyzing
fields have opposite directions but the same magnitude
(~600 6), and the current in the mixers is 150 mA.
Figure 3 sho~s our results. Apart from a permanent cen-
tral peak essentially due to the poor mixing obtained with

only longitudinal fields [8] (when iH =0 only Bt is

present), it is seen that the central bright fringe, original-

ly located at iH 0 when i~~ 0, appears more and more
symmetrically split as i~~ takes on more and more negative
values, whereas it disappears for positive values. Correla-
tively, the two first symmetric minima of the pattern un-

dergo a similar evolution insofar as their mutual distance
continuously decreases as i~~ increases from —6 mA up to
6 mA. The present behavior is characteristic of the coni-
caI configuration of the field. This is obvious from the
data represented by triangles in Fig. 3 which are obtained
with i~~

—4 mA by using a vertical frame instead of the
helix. As one can see, no splitting of the central peak
occurs.

The above results can be interpreted within the frame-

FIG. 3. H (2s& counting rate as a function of iH scanned
from —0.4 A up to +0.4 A, for fixed values of i~l ranging from
—6 mA up to +6 mA. No velocity selection is made. For each
spectrum the acquisition time is 1600 s. (When tH ir, the
magnetic field at the center of the solenoid is about 15 times
larger than that of the helix. ) Triangles correspond to a spec-
trum obtained with a vertical frame in place of the helix, with

il~
—4 mA. Broken curves: calculated interference patterns.

work of the vector model of a spin F (F=1) for two basic
reasons: (i) The magnitude of the applied magnetic fields
in the mixing zones and in R is weak ( 0.5 6); (ii) the

2s~g2, F 0 level, initially quenched by the polarizer, will

never be repopulated because of its suIIiciently large ener-

getic separation from the 2s~g2, F=1 level. As the angu-
lar frequency of BH seen by the atoms and the Larmor
frequency of the atoms in B have the same order of mag-
nitude (vH-vL, -0.15 MHz at v —10 km/s and 8-0.1

6), the adiabatic approximation is not valid. We then
have to determine the external motion of an atom in this
time-independent conical magnetic field. We shall use as
an internal basis set, the Zeeman states ~M& referred to a
Z-dependent axis e(Z) making a constant angle with the
Z axis, the azimuthal angle being that of B(Z), namely,
4'(Z) =WZ where W is the spatial frequency of the helix.
Expanding the comp1ete atomic state over this basis set
and leaving aside the unaffected X and Y motions, one

gets, from the stationary Schrodinger equation, a set of
coupled equations for the external amplitudes P~ associ-
ated with ~M&:

Q
2

~z&st+I, rt &~IF Bl~'& — l2&~l& I~'&& +&Ml~'l~'&& &2' 2'
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where E =fr K /2A is the initial kinetic energy, K the

initial wave number, g the Lande factor, JK the mass of
the atom, and pg the Bohr magneton. The two latter
terms in the brackets of Eq. (1) are dynamical couplings

coming from the Z dependence of the basis set, whereas

the first term is a static coupling due to the fact that e
and B are not collinear. It is readily seen that
8z= iW—Fz and that the matrix elements of Bz are
completely negligible when compared to those of rlz since
W-1/L and [8zPxt(-K. As all terms in the sum are
small compared to the free kinetic energy, one is allowed

to replace rlzPxr by iKPxt, which gives for the sum in (1)

Xgpa&MIF B.ttlM')&st . (2)

The effective magnetic field B,p =B+8~ggz, with

Bn 2EW/gott and uz the unit vector of the Z axis, is

exactly the one introduced by Schwinger in [16] for the
case of an atom at rest in a time-dependent field. If e is
taken along B,a, all coupling terms cancel. The (M)
states are then identified with the cyclic states defined by
Aharonov and Anandan in [17] and the accumulated
phase shifts, calculated for a rectangular B profile, read

M4 =2@M(B,a/Bp —1); (3)

4 is an even function of iH but it has no definite parity
property with respect to il. This behavior may be physi-
cally understood from the fact that the sign of 8~ is im-

posed by the sense of the helix with respect to the exter-
nal motion independently of that of 8~]. It is also impor-
tant to note that Bp and then also B,p are velocity depen-
dent. In Fig. 4, the interference order p =4/2ir is plotted
as a function of y=BH/Bn for some fixed values of
k Bi/Bn. A single minimum p;„ is obtained at BH =0.
For k 6 [—2,0], pm;„~ 0 whereas for k g [—2,0], pm;,
& 0. As a consequence, the zero interference order p =0

is never realized for Bi )0 and the interference pattern
"starts" at some positive value of p. For 8[I=0, p 0 is
obtained at iH 0 and the central corresponding bright
fringe looks broadened compared to [10] because here

p;„0 is a stationary value of p. At last, for
k 6 [—2,0], p 0 is obtained for two opposite values of
iH. Hence the central bright fringe, together with the
~hole interference pattern, is symmetrically split into two
bright fringes. This is indeed the behavior observed from
the data in Fig. 3 even if the situation is complicated by
(i) the velocity spread of the beam, and (ii) the mixing
mechanisms. This latter point has been treated in [10]:
To summarize, each mixer induces a rotation of the spin
which can be described by a Wigner matrix D ' (a,b, c)
where the Eulerian angles a,b, e are specific to the
mixers. For two identical mixers, it can be shown that

D~S'Da, where S' is the external evolution diagonal
matrix of phase factors exp(iM&), A (a) is the final (ini-
tial) column vector of external amplitudes on ~F =1,M).
The detected signal 4' is now identified with the sum of

FIG. 4. Interference order p as a function of y 8H/Brr for
fixed values of k 8i/8u. For an atomic velocity of 10 km/s,
Bw = 100 mG.

the populations of the analyzed states M 1,0 for two ini-
tial conditions, namely, a=(1,0,0) and a=(0, 1,0), be-
cause of the incomplete initial polarization of the beam.
Taking into account now the velocity spread of the beam,
and after some tedious calculations, one gets

4+ [2,cos2@+2 —
A, ]

8
(4)

where y is some function of the magnetic field in the mix-

ing region, i.e., a function of iH, i]], etc. In our calcula-
tions we have simply put y=2iH. Figure 3 shows the re-
sults. As one can see the global behavior is well predicted
and the quantitative agreement, if not perfect, is rather
good. This could be surely improved if one knew more
precisely the mixing mechanism (field lines in the mixers,
etc.) but this problem, if important, is not the central
point of our paper.

Since the work of Aharonov and Anandan [17] and
that of Samuel and Bhandari [19], it is known that the
quantum evolution displays topological effects even if it is
neither adiabatic nor cyclic. This latter point has been
nicely demonstrated with neutrons [20]. For our part, we
are only concerned with [17] since the evolution of the
atoms in the conical field can be considered as a nonadia-
batic cyclic one. As clearly outlined in [17], the phase

contains a geometrical part p =+—a where a
=2rrtt gBT/h cos(8 —H,tr) is the dynamical part (T is the
transit time in the conical field). The geometrical char-
acter of p essentially deals with the Hilbert space of
states in the sense that it only depends on the closed curve
C followed by the state in the projection map [17]. In the

where A, =sin b is the only mixing parameter. The treat-
ment of the mixers, as given in [18], led us to the follow-

ing form for X,:

A, -4exp( —yx) ll —exp( —yx)],
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present case, P takes the remarkable form P= —2tr(1

cosHgff ) which is just the opposite of the solid angle II,ff
sustained by B,g. This is reminiscent of the formula
( r—n II) with m = I given in [I] (which is recovered from

P in the adiabatic limit U 0) since in the spatially rotat-
ing frame defined by e the evolution is adiabatic (all cou-
pling terms cancel). The topological effect is demonstrat-
ed here via the symmetrical splitting of the patterns (note
again that this splitting does not occur when a rectangu-
lar frame is used in place of the helix) and it is only in

the adiabatic limit that tI is connected to a geometrical
quantity in parameter space (here the solid angle II is

sustained by the tip of B). Another point that could be
checked with atoms is the one demonstrated in [20],
namely, a topological effect occurring in a noncyclic evo-
lution.
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