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Wavelet Analysis of Time Series for the DufBng Oscillator: The Detection of Order within Chaos
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We consider a wavelet analysis of various time series for the Duffing oscillator, for which there is a po-
tential maximum and a harmonic forcing term, and we focus on time series that return to the region of
the potential maximum. When the dynamics is chaotic and the time series is highly nonstationary, there
are many significant higher harmonics in a Fourier expansion and the usual Fourier analysis is prob-
lematic, especially for short total times. We show that the wavelet analysis is a robust tool that may be
used to obtain qualitative information for highly nonstationary time series —specifically, that it may be
used to detect a small-amplitude harmonic forcing term even when the dynamics is chaotic and even for
short total times.

PACS numbers: 05.45.+b, 03.20.+i

The Fourier transform decomposes the time series of a
variable using harmonic basis functions that are corn-
pletely localized in frequency but completely delocalized
in time. It is assumed [1] that the time series is station-
ary but this assumption is often invalid for actual signals.
Recently, there have been extensive efl'orts, discussed by
Priestly [2], to extend the Fourier transform to analyze
nonstationary time series but, in general, these extensions
also use harmonic basis functions (and examine power-
series expansions in which correlations are introduced).
The wavelet transform decomposes the time series of a
variable using wavelet basis functions [3-10] that are lo-
calized in both frequency and time for a wide range of
frequency and time scales. Wavelet basis functions were
developed for the analysis of seismic signals [11]but have
recently been used to analyze other signals (such as those
connected with speech and vision) for which there are
large variations in the frequency or time scales [12,13].
The wavelet basis functions used here are two-parameter
functions that are an orthogonal basis for L (R), and
which are obtained from a single function by (one time
unit) shifts that act on the time variable and (factor of 2)
dilations that act on both the time and frequency vari-
ables. As discussed by Chiu [5] and Strang [10], the
basic set of orthogonal wavelet basis functions was de-
vised by Daubchies [6] and, from this set, we choose the
relatively smooth eight-coefficient functions. The six- and
ten-coefficient functions give very similar results but there
is some sensitivity to function shape. The wavelet trans-
form is termed a multiresolution decomposition because
each stage of the decomposition uses a different resolu-
tion, and the difference between the approximations to
the function at stages j and j—

1 is termed the detail of
the function at stage j. Our aim is to show that the wave-
let transform is a robust tool that may be used to obtain
qualitative information for highly nonstationary time
series. Specifically, we consider time series for the
Duffing Wscillator and we examine details of these time
series at several stages. We show that the wavelet trans-
form may be used to detect a small-amplitude harmonic
forcing term in the sense that the periodicity is evident

for certain details.
A wavelet transform and a windowed (or short-time)

Fourier transform [1,4,5] are similar in that both perform
a frequency analysis of the time series locally. However,
for a windowed Fourier transform, the time resolution is

the same for all frequencies whereas for a wavelet trans-
form, the time resolution is sharper for higher frequen-
cies. Consequently, a wavelet analysis can more easily
detect a high-frequency component of the time series.
Therefore, a wavelet analysis may be a valuable (if not
indispensable) complement to a windowed Fourier analy-
sis, especially for short total times. This is significant
since the signal to be analyzed may only be available for
short total times. A wavelet transform and a filtered
Fourier transform [1,7,8] are similar in that both can be
used to isolate frequency bands from the time series —in

the extreme case, a comb filter can be used to isolate a
single frequency. However, for the wavelet transform,
the procedure is systematic and no information is lost—the time series can be both decomposed and recon-
structed. The wavelet transform used here is discrete and
is analogous to, and at least as efficient as, the last
Fourier transform. It employs a pyramidal algorithm,
developed by Mallat [9], that is briefly discussed later.

For the Duffing oscillator considered here the potential
energy is [141

V=x /4 —x /2.

Thus there are two identical wells separated by a poten-
tial maximum at x=0. The equation of motion for the
Duffing oscillator considered here is [14]

x =x —x —bx+ ycos(tot) . (2)
The Duffing oscillator was developed as a simple model
for the hardening spring effect in many mechanical sys-
tems but has become one of the most common examples
of a nonlinear oscillator [15] and is briefly considered by
Priestly [1].

When a system is in the linear regime a Fourier
analysis of the time series is efficient. However, when a
system is in the nonlinear regime there are many
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significant higher harmonics in a Fourier expansion, and
the usual Fourier analysis is problematic in a practical
sense. This is especially true for short total times as
a Fourier analysis has difficulty distinguishing low-

amplitude peaks from noise for the kinds of nonstationary
signals under consideration. For simplicity we choose
x(0) =0.0 and, having specified the initial total energy
E(0), we solve for x(0) = —[2E(0)] 'j . Here we choose
E(0) =10 so x(0) is in the region of the potential
maximum (at x =0) and (for small ) ) the time series re-

turns to this region. Although y is small, it may have a
strong effect and the dynamics may be chaotic [16] for
some parameter values. It is then necessary to use an ac-
curate numerical integrator and here we use the well-

tested predictor-corrector method of Gear [17]. Here it
is assumed that x(t) is known to five significant figures
(issues related to finite precision and interactive noise will

be considered in a future publication).
We first briefiy consider some mathematical properties

[3-10] of the wavelet basis functions and the correspond-
ing subspaces of L (R). The V are subspaces of L
such that their union is L but their intersection is not
null. W is defined to be the orthogonal complement of
V in V —

~ (and V —
~ is the direct sum of V and W~).

Thus each V is a subset of V —
~ and its principal prop-

erty is that if g(t) is an element of V then g(2t) is an

element of V i. It is possible to define two-parameter
functions ttt~„(t) =2 j p(2 ™t—n) that are basis func-
tions for V~ and two-parameter functions ttt „(t)
=2 y(2 t —n) that are basis functions for W .
The W are subspaces of L such that their union is L
and their intersection is null. Thus the Ijt „(t) are an or-

thogonal basis for L and these are the wavelet basis
functions used here.

We now briefly consider the algorithm, developed by
Mallat [9], that is used for the decomposition of f(t)
Here the c„are the 2 values of f(t) that comprise the
time series and there are N stages in the decomposition.
The first stage is f=A

~f+8
~fwhile the jth stage is

Aj —)f=Ajf+Djf (3)
with

jf pc/(( jk

We examine details of x(t) at several stages for a cer-
tain time interval. In this time interval Ajx(t) is a fuzzy
approximation of x(t) at stage j. Aj —~x(t) is a less fuz-

zy approximation of x(t) at stage j—
1 which can be

reconstructed from Ajx(t) and D, x(t) D,.x(t), which is

discrete, is termed the detail of x(t) at stage j (or simply
detail j) and is the difference between the approximations
to x(t) at stages j and j—1. Thus, in a given time inter-

val, the amplitude of Djx(t) is proportional to the
difference between Ajx(t) and Aj Ix(t-) in this time in-

terval. Here this amplitude is plotted and, to guide the

eye, the points are joined by straight-line segments with

no smoothing.
Unless otherwise stated, results are for total time 120.

We consider x(t) and details of x(t) at several stages for
t =26 to 32 (our motivation for choosing this time inter-
val is indicated below). We first consider results for
)'=1.0&&10 . Figures 1(a) and 1(b) show x(t) from
t=0 to 120 for co=8.0 and 4.0, respectively. It may be
seen that the dynamics appears regular for ~=8.0 and
chaotic for to=4.0 and this is confirmed by calculations
of the Lyapunov exponent [15] which (for base 10) is ob-
tained from the average rate of increase of X(t)
=log~od(t). Figures 1(c) and 1(d) show l(t) with d(0)
=10 ' for co =8.0 and 4.0, respectively. It may be seen
that although k(t) is highly oscillatory in both cases, the
average rate of increase is essentially zero for co =8.0 and

positive for co =4.0. The total time 0 to 120 was divided
into 8192 steps and the thirteen details of x(t) were ob-

tained for t =0 to 120 (note that detail 1 has 4096 points
and detail 13 has 1 point). Figure 2(a) shows x(t) (with
vertical scale expanded) for co=8.0 while Figs. 2(b),
2(c), and 2(d) show details 2, 3, and 4, respectively (note
that for successive details the vertical scale increases by
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D,f=ddt', ttt, t, , (s)
k

where the coefticients cI, and dk are defined recursively.
Here the d~j are the coefficients of the detail of f at stage

j which are considered below. The above algorithm is py-
ramidal and requires a minimum number of operations
since at each stage only half the values of f(t) need be
retained. For the reconstruction of f(t) essentially the
same formulas are used in reverse. Therefore, while the
first stage in the decomposition is at the highest resolu-
tion, the first stage in the reconstruction is at the lowest
resolution.
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FIG. 1. For t =0 to 120 and @=1.0X10: (a} x(t} vs t for
to=8.0; (b) x(t) vs t for to=4.0; (c) k(t) vs t for co=8.0; (d)
k(t} vs t for co=4.0.
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FIG. 2. For co 8.0, y 1.0&10 3, and total time 120: (a)
x(t) vs t; (b) detail 2; (c) detail 3; (d) detail 4.

FIG. 4. Same as for Fig. 2 but for y 4.0x10
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an order of magnitude). It may be seen that detail 3
[Fig. 2(c)] is predominantly periodic with approximate
period z/4, as anticipated for to=8.0. Detail 2 [Fig.
2(b)] is completely "noisy" as is detail I, which is not
shown. This periodicity is somewhat evident in detail 4
[Fig. 2(d)] which is jagged as there are half as many
points as in Fig. 2(c). Figure 3(a) shows x(t) (with ver-
tical scale expanded) for to 4.0 while Figs. 3(b), 3(c),
and 3(d) show details 2, 3, and 4, respectively (note that
for each detail the vertical scale is a factor of 4 smaller
than in Fig. 2). It may be seen that detail 3 [Fig. 3(c)] is
predominantly periodic with approximate period z/2, as
anticipated for to =4.0. Detail 2 [Fig. 3(b)] is completely

"notsy" but this periodicity is evident in detail 4 [Fig.
3(d)] as there are as many points as in Fig. 2(d) but the

approximate period is double. Thus, the wavelet trans-
form may be used to detect a small-amplitude harmonic

forcing term even when the dynamics is chaotic. Note
that, especially when the dynamics is chaotic, it is not

possible to do this by subtracting from x(t) the periodic
time series for 8=0 and y 0, and the harmonic forcing
term is not evident in x(t) for this time interval even with

the vertical scale expanded [Fig. 3(a)].
We now consider results for y =4.0x 10 . Figure

4(a) shows x(t) (with vertical scale expanded) for
to =8.0 while Figs. 4(b), 4(c), and 4(d) show details 2, 3,
and 4, respectively (note that for each detail the vertical
scale is the same as in Fig. 2). It may be seen that detail
3 [Fig. 4(c)] is predominantly periodic with period tr/4,

as in Fig. 2(c), but the amplitude is approximately 4
times that in Fig. 2(c). Detail 2 [Fig. 2(b)] is "noisy"
but this periodicity is evident for part of the time interval.
This periodicity is somewhat evident in detail 4 [Fig.
4(d)] which is jagged as there are half as many points as
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FIG. 3. Same as for Fig. 2 but for co =4.0.
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FIG. 5. Detail 3 for to=0, y=8.0x10 3, and total time (a)
60, (b) 30.
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in Fig. 4(c).
Finally, we consider results for shorter total times for

y=8.0x10 and to=8.0. Figures 5(a) and 5(b) show
detail 3 for total times 60 and 30 divided into 4096 and
2048 steps, respectively [note that the vertical scale is a
factor of 2 larger than in Fig. 2(c)]. It may be seen that
detail 3 is predominantly periodic with approximate
period tr/4, as in Fig. 2(c), but the amplitude is approxi-
mately 8 times that in Fig. 2(c). This is the case even for
Fig. 5(b) where, for total time 30, detail 3 exists for only
part of the time interval 26 to 32 (which is our motivation
for choosing this time interval). For total times 60 and
30 divided into 8192 and 4096 steps, respectively, the de-
tails are essentially the same but at a stage one higher—the relevant quantity is the density of points for the
time interval. The details are not exactly the same be-
cause there are edge effects but, because the wavelet basis
functions are localized in time, these effects are minimal.
The periodicity is evident for certain details when the cor-
responding wavelet basis functions have the appropriate
localization in both frequency and time for the time inter-
val. As shown here, this resolution requires a relatively
slow rate of change of x(t) for the time interval. Thus,
for example, the wavelet analysis also works well for
t =11 to 17 or 40 to 46 but not for t =18 to 24 or 33 to
39 [where, for most of the time interval, x(t) is increas-
ing or decreasing rapidly]. The point we wish to em-

phasize is that the wavelet analysis is a robust tool that is

practical and efficient even when the dynamics is chaotic
and even for short total times. This is significant since
the signal to be analyzed may only be available for short
total times.
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