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Integrability and the Motion of Curves
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Recently discovered connections between integrable evolution equations and the motion of curves
are based on the following fact: The Serret-Frenet equations are equivalent to the Ablowitz-Kaup-
Newell-Segur (AKNS) scattering problem at zero eigenvalue. This equivalence identifies those evo-
lution equations, integrable or not, that can describe the motion of curves.

PACS numbers: 03.40.Gc, 02.40.+m, 11.10.Lm, 68.10—m

A variety of physical processes can be modeled in terms
of the motion of curves, including the dynamics of vor-
tex filaments in fluid dynamics [1], the growth of den-
dritic crystals in a plane [2], and more generally, the
planar motion of interfaces [3. In an intriguing recent
paper, Goldstein and Petrich [4] related integrable evo-
lution equations from the modified Korteweg —de Vries
(mKdV) hierarchy to motions of closed curves in a plane.
Being integrable, these motions conserve infinitely many
global invariants, including both the total length of the
curve and (if the curve is closed) its enclosed area. Their
work brings to mind earlier works of Hasimoto [1] and
Lamb [5], who showed that the nonlinear Schrodinger
(NLS) equation describes a family of motions of curves
in 3-space. Because NLS belongs to the same hierar-
chy of integrable equations as mKdV, all of these works
raise the same question: What is the relationship betujeen

integrable evolution equations and the motion of curves,
either in the plane or in 8 spaces' T-he purpose of this
paper is to answer this question.

The first step is to describe the motion of curves. Con-
sider a smooth curve in 3-space, parametrized by a. Let
r(o. , t) denote the position vector of a point on the curve
at time t. There is a metric on the curve,

g(a, t) = (Br/Ba)Br/Bcs;.
the arclength along the curve is given by

Br = Un+ Vb+ Wt,8t'
and the motion is said to be local if (U, V, W) depend
only on local values of (K, r) and their s derivatives [2,
4].

Two-dimensional motion. —Motion in a plane occurs
if V—:0 and r:—0 in (3) and (4). Then the evolution
in time of the other variables is determined by requir-
ing &, & r(n, t) =

& fr(o., t), and using 8( )/Btz[t ——

gi128( )/Bs~t. For 2D motion, the result is

(4)

t'BU ) . &BUt=
/

+KW /n, n= —
/

+rW /t,iBs j (Bs )

and we may use either fo, , t) or (s, t) as coordinates of a
point on the curve. At r(o;, t), let (t, n, b) denote respec-
tively the unit tangent, normal, and binormal vectors, de-
fined in the usual way (i.e., t:= Br/Bs = g ~ Br/Ba,
etc.). These vectors satisfy the familiar Serret-Frenet
equations [6],

Bt Bn Bb—= K'A, = —~t + ~b, —= —7.n,
Bs Bs Bs

where 8( )/Bs:= 8( )/Bs~t, and r(s, t) and r(s, t) are
respectively the curvature and torsion of the curve at r.
(Note that the sign of z here differs from that in Ref.
[4].) Motion of a point on the curve can be specified in
the form

s(n, t) = Qg(n', t) dn', (2)
(BW i . (8'U, 8

g=2gi —rU /, K=
i

+~ U+ W /,i Bs ) (Bsz Bs i
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from which it follows that

S =

or

Define 0(s, t) = j' dz r(z, t), and define F(s, t) by
Br/Bt = sin 0 + F, so that 0,2

——sin 8 + F. Substituting
these into (12) yields F, + 0, j dz0, F = 0, which can
be written as

s(n, t) = W(s, t)— KU ds', (6) dF
d8

8

d8'F =0, (13)

provided W(0, t) = 0. Because K(s, t) = Oic/Ot+s OK/Bs,
it follows that [4]

Or (B2U 2 Br.
~ +z U+ zUds') =: QU.

Bt ( s2 (7)

Bs i( q(s, t)I fvi
(r(s) t) —2( ) (vz (8)

Integrable evolution equations for q(s, t) and r(s, t) are
obtained by (i) specifying time dependence for v, and
(ii) requiring compatibility (i.e. , 3-3-,v = f3s-v) for all

(s, t, ().
The relation between these two subjects is as follows.

For curves in a plane, t and r2 each have two components,
related by (3) according to

Bt, Bn,
Bs Bs

= Kn~, = —Kt~, j = 1, 2. (9)

These are equivalent to (8) at ( = 0, with q = r, r = —q.
Consequently, any integrable evolution equation from the
mKdV hierarchy with (r = —q) is compatible with (7).
For example, if we choose U = Br/Bs, the—n r(s, t)
evolves according to the focusing version of mKdV [8],

r., + (3/2) r.'r., + r.„,= 0. (10)

No choice of U would permit r. to satisfy the defocusing
mKdV, K2 —(3/2)K2K, + r„, = 0, because this would
require (r = +q); similarly, r(s, t) cannot satisfy KdV,
Kt + KK, + ~„,= 0, which would require q = v. , r = —1.

In addition to local equations like (10), (7) also admits
nonlocal models, such as the sine-Gordon equation,

8,t ——sin 8.

To obtain (ll), choose U = 0 2r,„so that (7) becomes
OKt ——K, . This equation can be integrated once in s:

Kst+ K dz crt ——K. (12)

Notice that r (s, t), and hence the 2D motion of the curve,
follows from specifying U(s, t) and then integrating (7).
W(s, t) determines how points parametrized by n move
along the curve, but it does not affect the shape of the
curve.

The next step is to introduce integrability. A standard
description of a class of integrable evolution equations,
including the mKdV hierarchy, was given in Ref. [7]. The
basic scattering problem for v(s, t; () is

|' Bvi )

with the general solution F = A cos8+ Bsin 8. For any
choice of (A, B) one obtains 0,2

——C sin(0 + 0o), which
can be rescaled into (11).

Lamb [5] had obtained (11) as an equation for
the three-dimensional motion of curves with constant
nonzero torsion. The derivation given above shows that
the curve can have zero torsion, and the motion can be
purely two dimensional.

Because (9) requires (8) only at I,
' = 0, rather than

for all (, it is not necessary to choose U so that (7) is

integrable. Nor is it necessary to preserve the global in-

variants emphasized in Ref. [4], which we discuss next.
If the curve has finite length initially (say, 0 ( n ( 1 at
t = 0), then it follows from (6) that L, the total length
of the curve, is a constant of the motion provided that

(i) W(c2 = 1, t) = W(o, = O, t), and (ii) jo rUds = 0.

Independently, if j&
U'ds = 0, then A:= jo r x Br/Bs ds

is conserved as well. If the curve is closed, then A rep-
resents its enclosed area. If r(s, t) is a periodic solution
of (10), or of any of the other integrable motions in the
mKdV hierarchy, then these two quantities are among
infinitely many that are conserved in time. Among the
nonintegrable motions (i.e. , among all other possible 2D
motions of curves), there exist motions that conserve L,
or A, or neither, or both. Here are some examples. (i)
U = B ln K/Os, W = K. This motion is not in the mKdV
hierarchy, but if r(s, t) is periodic in s and nonvanishing,
then the motion conserves both L and A. If K is not pe-
riodic in s, then the motion conserves L, but not A. (ii)
U = O2r/Bs~, W—= 0. If r is periodic in s, then the mo-

tion conserves A, but not L. If r is not periodic in s, then
neither L nor A is conserved. (iii) U = r, , W = 0. This
leads to the so-called "curve-shortening equation" [9].
More generally, let U = Q„c„( 1)"Bz"r/Bs—", W = 0.
It follows from (6) that for any choice of non-negative

(c„), one obtains in this way a curve-shortening equa-
tion.

As a Anal comment about 2D motion, we mention
that most solutions of (7) do not represent the motions
of closed curves, even under the most favorable circum-
stances; namely, even if (i) U is chosen to give an inte-
grable motion from the mKdV hierarchy, and (ii) W is

chosen to preserve local arclength, so BW/Os = rU, and

(iii) r.(s, t) is periodic in s, for all t
To see this, let r(s, t) be a periodic solution of (7),

with period L. The orientation of the curve relative to
a fixed coordinate system is specified by 0(s, t), where

r(s, t) = B0/Os Asmooth, . closed curve requires that
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8(L, t) —8(o, t) =
L
rds = 2vrN. (14)

If (14) holds at t = 0, and if r.(s, t) is periodic, then
(14) continues to hold for t g 0, because (7) is itself a
conservation law (BK/Bt = BE/Bs)

In addition, a closed curve also needs

r(s = L, t) —r(s = O, t) =
L
tds = 0.

In a fixed coordinates system, t has components
(cos8, sin 8), so (15) implies that

L ~i8
e' ds=0 or d8=0. (16) FIG. 1. Figure-8 shaped curve.

Even if K is periodic in s and if 8 satisfies (14), (16)
imposes extra conditions that typically are not satisfied;
i.e. , most periodic solutions of (7) do not correspond to
closed curves.

As a simple example, let us seek all closed curves whose
shapes are invariant under mKdV, (10). Then K(s, t)
must be a periodic solution of (10) in the form of a trav-
eling wave, so r(s, t) = K(z) where z = s —At, and

Ar' + (—3/2) K r' + K"' = 0. (17)

(K ) + 4(K —cy)(K —c2)(K —cs)(K —c4) = 0,

c] +cg+c3+c4 =0.
(18)

We have found only one nontrivial class of closed invari-
ant curves, corresPonding to cq ———c4 = a, c2 = —cs = i b

Obviously r = const solves (17), and every circle is a
closed invariant curve under (10). More generally, one
integrates (17) twice to obtain

(a,b are real):

K(z) = acn(cr(z —zo), k), k =
a2+ b2

1/a2+ b2

(19)

where cn(z, k) is Jacobi's elliptic function [10]. From

(16), the curve is closed only if the elliptic modulus k
satisfies E(k) = 2K(k), so that k = 0.908911.. . . The
corresponding curve is the figure-8 shape shown in Fig.
l. In the soliton limit, k ~ 1 in (20), and the curve
becomes a loop [11].

It is interesting to note that this family of curves which
are shape invariant under (7) were first analyzed by Euler
(1744) in his study of etastica [12]. The figure-8, the loop,
and other possible shapes of elastica are illustrated in
Ref. [12].

Three-dimensional motion. —The situation is similar
for the motion of curves in 3-space, but there is more
algebra. The generalization of (6) for 3D motions is

(BU

( Bs
f'BV

( Bs

(BV-rV+KW in+ i
+rU

i b,
) & ~ )

18 t'BV l r fBU—«+KW It+
I

+rU I+) rBs (Bs ) K (Bs

BV l 1 8 (BV l r t'BU
+7U t- +r +-

( Bs ) r Bs q Bs ) K ( Bs

&BW
g=2gi —rU i,

q Bs

(20)

where ( ) = 8( )/Bti, as before. Because f(s, t) = Bf/Bt + (W —f'KUds')Bf/Bs, it follows that K(s, t) and r(s, t)
satisfy

0~ 0 U ~ ~ 0~ ', OV Bv.
2 + (K —r )U+ KUds' —2r — V,88 Bs Bs Bs

Br 8 18 fBV l r 1'BU OV+rU i+ —
i

—rV i+r KUds' +KrU+KBt Bs r Bs ( Bs ) r ( Bs ) BS

(21)
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Because the curve can be reconstructed (up to orien-
tation and translation) from a knowledge of K(s, t) and

r(s, t), (21) determines motion of the curve in 3-space.
Notice again that W(s, t) does not affect the evolution of
the curve.

The relation of these 3D motions to integrable evolu-

tion equations is similar to that of 2D motions. We show
next that the Serret-Frenet equations, (3), are equivalent
to (8) at ( = 0, with r = —q*. Hence, equations from
the mKdV hierarchy with (r = —q"j represent possible
motions of smooth curves in 3-space. The description
in terms of NLS [1] is the simplest nontrivial case of an
integrable motion. However, nonintegrable motions are
possible as well.

According to (3), each set of components of (t, n b)
satisfies

R~
Bs

Kn
Bng = —Kt~ + ~b, ,Bs

(22)

b~' =-~n2 j =12 3
S

These equations admit an integral, which we normalize
to t2 + n2 + b2 = 1, j = 1, 2, 3. Following Lamb [5] and
Darboux [13],we define

P(s, t):= K(s, t)s, (23)

(24)

Then under the additional transformation,

'(0&; i
ss| =N, exp —

~

s
~
ds'),

2 (I —t, )

'f4»;i
sss =(1 —t, )exp —

~

'
~
ds'),

2 kl —t

(24) becomes

cia) i 1= 24to2s
B~z 1

Bs 2
IUD. (25)

These are equivalent to (8) at ( = 0, with q = —P/2,
r = —q*, as asserted above. The realization that (3)
implies (8) only at ( = 0 is the main difference between
our results and those of Lamb [5].

Using (23), the evolution equations (21) become

where s:= exp(i f'r(s', t) ds'). Similarly, for each j =
1, 2, 3, let

N, := (n~ + ib, )s

so that (22) becomes

02
, + [4['+id

8 sag s

ds' rp' +
S

02
ds'P' (Us)+ i, +i[/['+P

Bs
ds' rP* —i P ds' (Vs).

08 (26)

4+4„,+(3/2)lyl'y, =0. (27)

If P is initially real, corresponding to a 2D curve without
torsion, then (27) reduces to (10), and the curve remains
in the plane.
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