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Signature of Neel Order in Exact Spectra of Quantum Antiferromagnets
on Finite Lattices
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We show how the broken symmetries of the Neel state are embodied in the exact spectrum of the
triangular Heisenberg antiferromagnet on finite lattices as small as N = 21 (spectra up to N = 36
have been computed). We present the first numerical evidence of an extensive set of low-lying levels
that are below the softest magnons and collapse to the ground state in the thermodynamic limit,
This set of quantum states represents the quantum counterpart of the classical Neel ground state.
We develop an approach relying on the symmetry analysis and finite-size scaling and we provide new
arguments in favor of an ordered ground state for the S =

2 triangular Heisenberg model.

PACS numbers: 75.10.Jm, 75.30.Kz, 75.40.Mg

In the last decades, a large amount of work has been
devoted to the understanding of the quantum ground
state of two-dimensional antiferromagnets. In the early
seventies, Anderson launched a debate on the possible ex-
istence of a "resonating valence bond" (RVB) state which
could represent an alternative to the Neel antiferromag-
netic state [1]. The first candidate to be considered was
the spin-2 Heisenberg antiferromagnet on the triangular
lattice:

where the sum runs over Erst neighbor pairs. A varia-
tional RVB state was proposed to be more stable than
the Neel state [2]. From the spin-wave analysis, it was
later concluded that quantum fiuctuations were insuffi-
cient to destabilize Neel's classical state [3]; perturbative
approaches led to the same conclusion and variational
ones did not weaken it [4, 5]. However, exact results of
diagonalization on small periodic samples up to N = 27
were extrapolated and gave the opposite result [6, 7]. But
in the above numerical studies, the spin-liquid hypothe-
sis was not really explored, nor was the Neel long-range
order (NLRO) assumption convincingly discarded.

Usually NLRO is checked on the finite-size scaling of
the ground-state energy and magnetization [8, 9]. The
magnon dispersion relation being linear in k, the lead-
ing finite-size correction to the ground-state energy per
particle F is O(N ~ ) and that for the magnetization
modulus per particle M is O(N t 2) (M~ is defined in

[10]). Figure 1 shows the values of E~ and M~ for small
periodic samples. We present the results for the erst
calculation of the N = 36 sample, a calculation made
possible by using all the symmetries of the Hamiltonian
and the lattice. We find (2S, S~)ss = —0.3735823(1)
and Mss = 0.400575(1). Prom the values, it is clear that
the magnetization modulus does not extrapolate to zero
in the N ~ oo limit; but, it is difficult to assert that the
finite-size sealing of the ground-state energy behaves as

N ~ . Therefore, no de6nite conclusion can be drawn
from the ground-state evaluations on small samples.

In this Letter we show how the hypothesis of NLRO
implies a list of drastic conditions on the symmetries,
dynamics, and the finite-size scaling of an extensive
[O(Ns~~)] set of low-lying levels of the spectrum. Some
of these conditions are new, others go back to Anderson's
seminal paper on antiferromagnets [11] or have been dis-
cussed since then [8, 9]. We shall see that this complete
list of conditions, which determines all the quantum num-
bers of the Ns~~ lowest-lying levels of Eq. (1), constitutes
a necessary and suKcient condition for an a la Neel sym-
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FIG. 1. Finite-size scaling analysis. Top: Energies E~ vs
~; k, exact diagonalization values; - — —, spin-wave re-

sults (note that the energies for N = 21, 27, 36 do not seem
to obey a reasonable finite-size scaling law); 8, energies after
rotational correction (see text) for odd N; —,extrapolation
of the "corrected results" for N = 21, 27, 36. Bottom: mag-
netization modulus M~ vs N; g, exact diagonalization
results; — — —,spin-wave results; —,extrapolation of the diag-
onalization results for N = 21, 27, 36.
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metry breaking. The success of this scheme, illustrated
here on the triangular Heisenberg case, clearly depends
on the ability to determine all quantum numbers (sym-
metries) and the degeneracy of a large number of states
[O(N5~ )], which implies to calculate the energies in each
irreducible representation of the symmetry group of the
system. We shall now deduce these five conditions from
the analysis of the nature of a Neel semiclassical ground
state.

In a Neel antiferromagnet, the magnetization of each
sublattice is a macroscopic vector which breaks the SUz
symmetry. The previous numerical calculations checked
the modulus of this vector in the ground state of the
Hamiltonian (an S = 0 or S =

z eigenstate depending
on the even or odd value of N), but this is insufficient
to insure the vectorial character of the order parameter.
Remember that in an S = 0 state, all vectorial observ-
ables are zero (Wigner-Eckart theorem). In order to fix
a macroscopic vectorial order parameter along the direc-
tion (0) with an uncertainty G(s), it is necessary to form
a wave packet of eigenstates with S values up to G(1/s).
The quantum counterpart of a classical Neel state, either
a ground state or a magnon excitation, is necessarily a
coherent superposition of an extensive set of eigenstates
of Eq. (1) reading
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~Neel(A)) = ) n(i, S)Y '(A)~i, S, ms),
i,Simp

(2)

where the total spin S, its z component mg, and the
spatial-symmetry type i are the labels describing the
eigenstates of Eq. (1) [12]. Such a state is called a
"macroscopic" state in the following.

It is clear that in the NLRO hypothesis the sublattice-
magnetization modulus must be macroscopic in each of
the ~i, S, ms) states participating in Eq. (2).

On a finite lattice, these ~i, S, mg) levels are nondegen-
erate and the sublattice magnetization in such a state
(Neel~sk, ~Neel), where Sk, is defined in [10), evolves at
various values of E, E~. Let us cal—l b,E the largest value
of these differences. In the NLRO hypothesis, the sublat-
tice magnetization is the slow variable of the problem and
in the thermodynamic limit the energy scale DE must go
to zero faster than the frequency of the softest mode of
the system, i.e., faster than N i~z. Therefore, for large
enough N, the energy spectrum must exhibit well sepa-
rated extensive sets of energy levels respectively associ-
ated with the degenerate classical ground states and with
any magnon excitations, which are the long-wavelength
excitations of this slow collective macroscopic variable
[13,14].

In the NLRO hypothesis, the purely angular nature of
the slow collective variable implies that these sets of en-
ergy levels must map onto a rigid rotator model. Thus,
we expect the main dynamics of the ~i, S, ms), partici-
pating either in the macroscopic ground state or in the
magnon excitations, to be described by the centrifugal

FIG. 2. Energy spectrum of Eq. (1) vs S = S(S+1). (a)
complete spectrum for N = 12; (b) partial spectrum for N =
21. The efFective rotational correction proportional to S(S+
1)/I has been subtracted from the raw results. k, QDJ
states; D, outsiders with the same spatial symmetries as the
QDJ states (extra copies, see text); —,magnons (k g 0, kkp);
~, C3 rotational noninvariant states (k = 0, +kp), the first
states that could support chirality (in this system, both the
extra copies and the rotationally noninvariant states present a
nonvanishing gap with the ground state). (c) Enlargement of
(b) for the QDJ states. The numbers 1, 2, and 3 refer to the
irreducible representations I'q, I q, and l 3 and with respective
degeneracies 2S + 1, 2S + 1, and 2(2S + 1).

term Sz/2I&+, where I~+ scales faster than Ni~z. Indeed,
this is verified on the triangular lattice for all samples
considered (N = 9, 12, 21, 36). Figures 2(a) and 2(b) il-
lustrate this behavior as well as the separation between
the ground-state multiplicity and the magnon multiplic-
ity. In the following, we shall concentrate specifically on
the quantum states ~i, S, ms ) participating in the ground-
state multiplicity: we call them the quasidegenerate joint
states (QDJ). In the QDJ spectrum, the largest frequency
scale LE of the magnetization is thus of the order ofS,„/I&+, where S ~„ is the maximum value of S in Eq.
(2). From numerical results, we find that I&+ scales as N
(see Fig. 3 and [15]). The natural cutofF of 6E being of
order O(N i~~), the energy of the softest magnon, the
Neel ground state includes QDJ states up to S = N ~ .
Moreover, this mapping of the Heisenberg problem on a
rigid rotator one imphes that one must find (2S+1) QDJ
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FIG. 3. Moment of inertia, I~, vs sample size, 1V. For
a given N, I~ is the slope of the straight line obtained by
a mean-square fit to the S(S + 1) dependence of the QDJ
energies (see Fig. 2).

states for each S value. The first factor of (2S+1) stands
for the rotational degeneracy of the S state, while the sec-
ond one comes from the various values of the projection
of the external angular momentum on the intrinsic top
axes. In the triangular lattice, we expect this rigid rota-
tor to have a cylindrical symmetry in the thermodynamic
limit.

The SU& symmetry breaking of the Neel antiferromag-
net implies thus strong constraints on the low-lying en-

ergy spectrum of the Heisenberg Hamiltonian. It requires

(i) the existence of an extensive set of QDJ levels scal-
ing towards the absolute ground state faster than the
first magnon mode [Figs. 2(a) and 2(b)], (ii) exhibit-
ing the dynamics and degeneracy of a top for total spins

up to S = O(N i ) (Figs. 2 and 3), (iii) having the
same macroscopic value of the sublattice magnetization
or, equivalently, the same value M~ of the order of unity
(Fig. 4). With these first three properties, any combina-
tion of the qDJ states unth a smooth distribution of n's
breaks the SU(2) symmetry in the thermodynamic limit,

giving a rigid state with a macroscopic magnetization.
The last step to totally determine the QDJ states is to

specify their i labels, that is the spatial quantum numbers
which constitute with S and ms the complete set of quan-
tum numbers of the problem [12]. The complete analysis
is rather technical and will be published elsewhere, and
we outline here the main ideas. The symmetry group of

the lattice is the semidirect product of the group of trans-
lations To (with generators ui, u2, ur u2 = —1/2) by the
dihedral group D6. The symmetry group of the Neel or-

der parameter is the semidirect product of the group of
translations on each sublattice Ti (2ui + u2, u2 —ui) by
the dihedral group Ds (—= Cs„). In the NLRO hypothesis,
the fourth condition is that the QDJ states must be in-

variant under C3„. The three irreducible representations

(IR) of the spatial group of the lattice which have this
invariance are the following: I'i, the k = 0, even under

inversion, invariant under C3„ IR; I'2, the k = 0, odd
under inversion, invariant under C3„ IB.; I'3, the k = +ko
IR. The other IRs of this spatial group, which effectively

appear higher in the spectrum, are necessarily excluded
from the QDJ. The last condition is deduced from the

FIG, 4. Order-parameter modulus M~ vs total spin S in
the I'i-IR for the N = 36 spin sample. For each value of S,

, A, and —stand for the ground state, first-, and second-
excited states. The double-circled values point to QD J states
actually participating to the Neel macroscopic state [Eq. (2)].
The single-circled values point to levels that will in larger
samples collaborate to the Neel state, The uncircled results
correspond to outsiders belonging to excited states, whatever
the size of the sample.

symmetries of the classical Neel state which permute
the three sublattices and simultaneously rotate the spins
(these symmetries conserve the total spin); for each value
of S, the number of replicas of each allowed IR in the QD J
states must be nr, = (a+3b+2c)/6, nr, ——(a 3b+—2c)/6,
and nr, = (a —c)/3, where a = 2S+1, b = cos(S7r), and
c = sin[ s (2S+ 1)]/sin( s ). Extra copies of these IR
should not mix with the QDJ states. These two last con-
ditions, urhich determine the i label of the qDJ states,
are exactly verified in all our samples up to S G(~N)
[see Fig 2(c)].

If any of these five criteria are not fulfilled, then one
cannot ascertain that the thermodynamic ground state
is Neel like: so these criteria are necessary conditions
for that kind of symmetry breaking. Reversely if these
criteria are fulfilled, the structure factor of the system
will have the precise features which are observed in Neel
antiferromagnets.

Now, one can achieve the finite-size scaling analysis of
E~ and M~. Note that for odd N, we have to extrap-
olate the ground-state energy to "S = 0," because the
S(S+ 1)/2I~N contribution is not small enough to be
neglected. After this correction, the N i scaling law
appears much more convincingly (Fig. 1). Our final ex-
trapolations include only the N = 21, 27, 36 results. We
find E~ = (28, S~) = —0.365 and M = 0.25. These
numbers by themselves do not call for long comments.
Their accuracy could be estimated to be of the order of
a few units in the last digit and E is compatible with
previous other results [3—5]. Despite the dispersion of the
results for the magnetization modulus M obtained by
the different methods [3, 4, 16] (from 20% to 50%%uo of the
classical value), most of them converge, now, to a nonzero
value. Our estimation of M, definitely a nonzero value,
is about 50% of the classical value, that is approximately
the same estimate as the spin-wave theory [3].

We have shown in this work how exact diagonaliza-
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tions on relatively small samples lead to a clear-cut illus-
tration of the symmetry-breaking scheme in Heisenberg
quantum antiferromagnets with an ordered ground state.
The cornerstone of our approach is the identification of
the macroscopic symmetry-breaking state [Eq. (2)] and
of the nature and dynamics of the QDJ states. The scal-
ing laws of the whole set of low-lying levels (QDJ and
magnons) is a new evidence in favor of an n la ¹elsym-
metry breaking for the triangular Heisenberg problem in
the thermodynamic limit and fully justifies the spin-wave
theories. This method can be generalized to other kinds
of tensorial long-range order.
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