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Nontrivial Magnetic Order: Localized versus Itinerant Systems
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The generalization of the non-Néel spin ordering concept to itinerant systems is discussed. It is
shown that some of the p-type spin nematic and chiral spin states affect the electronic spectrum near
the Fermi surface and can then be related by symmetry with the intrinsic instabilities of the Fermi
liquid although the energetic mechanisms for the localized spins and itinerant electrons are different.
If the localized and itinerant subsystems coexist, the phase transition is described by the common

26 OCTOBER 1992

order parameter. Possible experimental manifestations of the above transitions are discussed.

PACS numbers: 75.10.Jm, 74.65.4n, 75.30.-m, 75.10.Lp

Recently, the possibility of the non-Néel ordering for
the antiferromagnetically interacting local spins has been
widely discussed. The very fact that order parameters
other than the average local magnetic moment are pos-
sible has been known for a long time [1, 2]. Our inter-
est in this problem is mostly related to peculiarities of
the magnetic behavior of some high-T, oxides and heavy
fermion materials. In the high-T, compounds, a very
small amount of free carriers destroys the long-range an-
tiferromagnetic order, particularly in the 214 systems.
As is argued in [3], the disappearance of the staggered
magnetization at small doping may indicate the instabil-
ity of the Néel state with respect to the formation of a
nontrivial phase rather than the transition to the para-
magnetic state. As for the heavy fermions, in URu3Si;
and UPt3 the average magnetic moments appear below
17.5 and 5 K, correspondingly. However, the moments as
seen by neutrons are extremely small in both compounds
(~1072upg). On the other hand, the phase transition at
17.5 K in URusSi; is accompanied by the strong specific-
heat anomaly which shows that the magnetic entropy
involved is quite large. In other words, the spin degrees
of freedom are affected more strongly by the transition
than can be expected from such a small average magneti-
zation. This contradiction can be resolved if one assumes
that unlike for the ordinary antiferromagnet the stag-
gered magnetization here is not a driving order param-
eter. This is a strong argument in favor of a nontrivial
phase, as has been suggested in [4]. Since both high-
T. and heavy fermion compounds have magnetism which
coexists with the metallic behavior, in what follows we
address the issue of a correspondence between the sym-
metry classifications of the non-Néel magnetic phases in
the localized and itinerant systems and the consequences
of the existence of nontrivial phases in a system with both
localized and itinerant components. As for the purely
itinerant systems, we believe that the above phases could
appear in some of the intercalation compounds and or-

ganic conductors as a result of electronic instabilities.

For a localized spin system (assuming the exchange
approximation), only the spin degrees of freedom are in-
volved. Any order parameter in this case can be written
as a multiple-spin average of the form

<Sla1"’SK]N>:ZT?FHQNQC(I‘I"”’I-N)’ (1)
¢

where T are tensors and ®. are the basis functions of an
irreducible representation (multidimensional, in general)
of the symmetry group of spin scalars G (G does not
necessarily coincide with the crystal group of the higher
symmetry phase). The basis function ®, transforms as

Q. (r1 +R,...,ry +R) = exp[iQ¢ - R]
XQC(I‘ISH'arN) (2)

under the lattice translation R. In what follows, the
index ¢ enumerating basis functions will be omitted as
unimportant for the present discussion.

The time reversal symmetry is broken only if N in (1)
is odd. Thus, for the dimer state, T®# = §%¢  while
for the chiral spin state [5] T®%7 = €57, Note that the
parity breaking here is described by the spatial part of
(1), ®(ry,...,rn). For the p-type spin nematic [6, 7],
Taf = ¢2B7 P, The options for the n-type spin nematic
6] are T = nonf — £698, TP = u*? +vouf (v Lu),
or even a more exotic possibility of a symmetric T =
TP with the eigenvalues {sin 75, — cos {5, cos T} [8] (see
[8] for a phenomenological classification of the n-type spin
nematics). For the tensor spin state discussed in [4], T is
a third-rank symmetrized spin tensor and T%*7 = 0.

In principle, (1) allows us to enumerate all order pa-
rameters for the localized spins. In the presence of the
itinerant electrons, the straightforward generalization is
obvious in terms of correlators of the form (1) constructed
using the total spin density operators which include both
localized and itinerant contributions. An intrasite ex-
change interaction between the localized and itinerant
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subsystems
1
H=7J)" (5 Ooro - sl;;c) Wl () Vo (1n), (3)

in the perturbative approach would induce corrections to
the Fermi-liquid features due to the presence of the non-
trivial order parameter in the localized subsystem. Then,
one may attempt to establish a correspondence between
the perturbations induced by the nontrivial localized spin
order, and possible intrinsic instabilities for the electronic
subsystem. In general, such perturbations involve elec-
tronic states far away from the Fermi surface and there is
no distinct electronic mechanism favoring the formation
of a specific phase. However, there are two exceptions.
First, for the transitions without translational symme-
try breaking (Q = 0) and, second, when the electronic
spectrum has a nesting property e(p) = —e(p + Q).

Consider first the case of Q = 0. In the Fermi-liquid
approach, deviations from the equilibrium are described
with the help of the Landau function

f,p) = f*(p,p') + -6 f(p,p) (4)

(6 are the Pauli matrices), which can be decomposed into
the sum over all irreducible representations of the crystal
point group:

@0, p) =3 £ u()u(p), (5)

where u;(p) is a complete set of the basis functions. The
Fermi liquid is stable if

1+ N(0)ff >0, 1+N(0)f¢>0 (6)

for any ¢ [9] [N(0) is a density of states at the Fermi
surface]. As has been recently discussed [4], this ap-
proach can be useful in classifying the nontrivial phase
transitions for the itinerant system without the unit cell
change. If one of the stability conditions (6) is broken, a
new symmetry distortion for the equilibrium Fermi sur-
face develops. Such a phase transition is called a Pomer-
anchuk instability [9]. The energetic mechanism is ex-
pressed here in terms of the Fermi surface reconstruction
due to the self-consistent interaction between all elec-
trons as it is described by the Landau function. The
corresponding variation of the quasiparticle occupation
numbers compared to the one for the higher symmetry
phase is either spin symmetric,

sn(p) = 1A°(p), (7)
or spin antisymmetric,
67 (p) = (6 - d) A%(p), (8)

where A°(p) or A%*(p) transforms as one of the repre-
sentations, u;(p). For a spin-symmetric instability, the
spin rotational symmetry is preserved. As for the spin-
antisymmetric phase, it is ferromagnetic for the identical

representation and, as one can show explicitly, antiferro-
magnetic for any nonidentical and even A%(p) = A®*(—p)
representation (the magnetic cell coincides with the lat-
tice unit cell).

The phase (8) with odd A%(p) = —A%(—p) is neither
ferromagnetic nor antiferromagnetic [10]. Essentially, it
is a “spin-split” state [11] with different Fermi surfaces
for different spin projections. (This state seems to pos-
sess a macroscopic spin current [11]. An arbitrarily small
dissipation eliminates this current, while the symmetry
remains intact.) The time reversal symmetry is preserved
while the spin rotation symmetry is broken with only the
axial symmetry in the spin space; i.e., the symmetry is
actually the same as in the p-type spin nematic state for
the localized spins characterized by the order parameter

Py = ([Sl X S2]>, Py =-Py (9)

[P12 = P(r; — r2) for Q = 0]. For the itinerant sys-
tem, the symmetry breaking (8) explicitly involves spa-
tial degrees of freedom while for the localized spins the
analogous role is played by the change in the spin Young
scheme. As one can calculate, the itinerant instability
introduces a twist for the localized spins

2
([S1x 83]) = (E(SSTL”)

xniz 5 3 Trlosn(p)]sin[p -] (10)

(for the sake of simplicity, we neglect the interactions in
the localized subsystem in this formula), where rq, =
r,—rp, and

Nab = -}v Z n(p) cos [P - Tap) (11)

is a Fourier transform of the unperturbed Fermi occu-
pation number n(p), although the genuine order param-
eter here is the distortion of the Fermi surfaces for dif-
ferent spin projections. When both the itinerant and
localized subsystems coexist, the order parameters in-
duce each other through a term in a free energy linear in
both Pi2 and §7(p). All of this allows us to call the odd
spin-antisymmetric Fermi-liquid instability (8) an itiner-
ant p-type spin nematic.

Consider now the spin-symmetric instability (7) with
odd A*(p) = —A*(—p). Once again, some of the order
parameters of this kind seem to allow an energetically un-
favorable persistent macroscopic current. However, ex-
actly as above, a dissipation would eliminate the current
without changing the symmetry itself. Depending on the
representation, currents may not appear at all if a pseu-
dovector (i.e., the orbital moment) is not allowed by the
representation (for instance, the representation invariant
with respect to all rotations and odd under the space in-
version). Unlike the previous case, this state does not
involve electronic spin degrees of freedom at all. How-
ever, as one can show, the symmetry here corresponds to

2587



VOLUME 69, NUMBER 17

PHYSICAL REVIEW LETTERS

26 OCTOBER 1992

that of the chiral spin state for localized spins which has
the following order parameter:

Rizs = e*#7(S75553). (12)
As in the case of a p-type spin nematic, if the localized
and itinerant subsystems coexist, the order parameters
induce each other so that the anomalous local spin cor-
relator for the itinerant-driven transition is
3 (JS(S + 1))3

Rigg = -
123 2 3T

1 | .
XN12M23 55 ; Tr[67(p)] sin (p - r31)

+cyclic permutations of (123) (13)

[nab is determined by (11)]. Correspondingly, one can
call this state an itinerant chiral spin state.

Turn now to the case of broken translational symme-
try (Q # 0). The coupling interaction (3) introduces
matrix elements between electronic states with wave vec-
tors p and p + Q. The problem involves states far away
from the Fermi surface unless it has a nesting property
e(p) = —e(p + Q). In this case, the reconstruction
of the electronic spectrum near the nested parts of the
Fermi surface is energetically most important. As is well
known, such a system can be unstable with respect to the
electron-hole condensation where the order parameter is

Fbor(p) = —(Tras(p)al. (p + Q). (14)

The symmetry with respect to spin rotations allows the
singlet or triplet form of (14):

F(p)=1F*(p) or F(p)= (6 -d)F'(p),  (15)

where F(p) transforms as an irreducible representation
of the small group of Q. In what follows, we assume the
commensurate vector Q (2Q is a reciprocal lattice vec-
tor). If the representation was identical, F*(p) in (15)
would describe the charge density wave (CDW) while
F*(p) means the spin density wave (SDW) formation.
The transition manifests itself in the divergence of the
electron vertex part I'(12;34). In the weak coupling
regime, there is a large parameter In(ep/To) > 1 (Tp
is a transition temperature) which allows one to solve
the problem rigorously in a justified approximation. The
intersite Coulomb and exchange interactions favor the
development of the phases with nonidentical representa-
tions [12]. In some cases, such phases are accompanied
by the persistent staggered microscopic spin or charge
currents [13]. Time reversal transforms electronic an-

nihilation and creation operators as follows: a,/(p) —

go”oa’jy(’—p)v al'(p) - ga’aad(-p)v Where Go'o = iog-/ga

so that F*(p) — F*(Q — p) and Fi(p) —» —F*(Q — p).

Consider the time reversal invariant triplet order pa-
rameter [F(p) = —F*(Q — p)]. Like the case of Q =0,
this phase retains axial symmetry in a spin space and
time reversal invariance, and therefore is analogous by
symmetry to the p-type spin nematic [14]. If the spin

2588

nematic order parameter P corresponds to the crystal
group representation with the nesting vector Q,

P(ri+R,r; +R) =exp[iQ - R] Py (16)

(exp[21Q - R] = 1), the existence of the electron-hole
condensate results in the anomalous average for the local
spins
JS(S+1)\°
(IS1 x Sa]) = 2 (—_(_-_)>

3T

iy S @ VB (1
[the average (17) is always real]. Therefore, exactly as
the spin-antisymmetric and odd Pomeranchuk instability
(8) is a generalization of the p-type spin nematic phase
for a transition without a change of the unit cell, the
above electron-hole pairing is an analog of the p-type
spin nematic phase with a doubling of the unit cell.

Unlike for Q = 0, the action of the lattice inversion
r — —r is generally different from that of time reversal.
The former operation transforms F*(p) to F*(—p) while
the latter connects F'(p) with —F*(Q — p). Hence, for
the lattice with center of symmetry there are two different
kinds of itinerant spin nematic phases: Ft(p) = F*(—p)
and Ft(p) = —F!(—p). In the former case, F'(p) is
imaginary while in the latter case it is real. In both cases
the parity is broken: P15 = —P5;. However, for the even
instability Py, r, = P_r,,—r, while for the odd instability
Prl,rg = “P—rl,—rg-

As was mentioned, for the quasi-one-dimensional
model in the weak coupling regime, there is a well-defined
large parameter, In(ep/Tp) > 1, so that the mean field
approach becomes a well justified approximation. There-
fore the low-temperature properties of the itinerant spin
nematic phase can be obtained in the same manner as
for the spin density wave transitions. Unlike the case of
Pomeranchuk instability for Q = 0, the electronic spec-
trum possesses a gap near the nested regions of the Fermi
surface. Below the transition point, spin wave excita-
tions with linear dispersion appear due to the contin-
uous symmetry breaking. The macroscopic properties
of the spin nematic phase such as the specific heat or
the bulk spin susceptibility xo are indistinguishable from
those for a SDW [2, 6]. It is known that the xo stops be-
ing isotropic once the magnetic anisotropy energy fixes
the direction of d. One can calculate that in the nest-
ing model, xo(H| d) decreases as temperature decreases
and vanishes at 7" = 0 while xo(H L d) does not tend to
zero at small temperatures. At the same time, the prop-
erties near the nesting wave vector of the spin nematic
phase are qualitatively different from those of the spin
density wave. For instance, the staggered susceptibility
x(Q) which for the spectrum with nesting increases as
temperature decreases would saturate at the value of the
order of xo In(er/Ty) > xo for the spin nematic tran-
sition, while for the SDW it diverges, resulting in the
onset of long-range antiferromagnetic order. As one can
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show, the dynamic response function x’'(q,w) which de-
termines the inelastic neutron scattering intensity and
the NMR relaxation rate develops a peak at q = Q as
temperature decreases. The temperature dependence of
the relaxation rate has a maximum below Ty. This maxi-
mum is due to the quasiparticle scattering with negligible
energy transfer near the gap edge where the density of
states is divergent, and in this sense is similar to the
Hebel-Slichter peak for the superconducting transition.
Below the transition x”'(q,w) is anisotropic. However,
the NMR line is not shifted, unlike for the SDW.

Consider now the case of the singlet electron-hole
order parameter which breaks time reversal symmetry
[F*(p) = —F*(Q — p)]. Generally, there could be a mi-
croscopic staggered current which creates staggered or-
bital magnetic moments although the macroscopic cur-
rent is absent (this phenomenon is known as the orbital
antiferromagnetism [13]). Whether the average local or-
bital magnetic moments are zero or not depends on the
choice of the representation (see above). The same as for
Q = 0, the itinerant and chiral spin order parameters
induce each other through the term in the free energy
linear in both Rj23 and F*(p); the anomalous local spins
correlator is

JS(S +1)\?
R123=3(—(§T—2)

1 ) )
XM12M23 37 Z [iF*(p)] e t(P+Q)ratipr,
P

+cyclic permutations of (123) (18)

(ImRj23 = 0), and this itinerant phase is an analog of
the chiral spin state with a doubled unit cell.

In the case of the singlet electron-hole wave func-
tion for the lattice with the center of symmetry, odd
F¢(p) = —F*(—p) is real while even F?*(p) = F*(—p)
is imaginary, and the anomalous spin average Rja3, cor-
respondingly, changes sign with r — —r or remains in-
variant. All properties of this phase can again be cal-
culated rigorously. xo remains isotropic and decreases
rapidly below the transition while the staggered suscep-
tibility x(Q) saturates. Like above, there is a peak at
Q in the isotropic dynamic response function as well as
a Hebel-Slichter-type maximum in the NMR relaxation
rate below Tp.

To summarize, we have shown that in the exchange
approximation only the chiral spin state and the p-type
spin nematic state influence the electronic spectrum near
the Fermi surface. In the system with both localized
spins and itinerant carriers, the above two phases may
be the result of either the Pomeranchuk instability if
Q = 0, or the electron-hole condensation near the nested
Fermi surfaces if Q is commensurate. Note that in the

heavy fermions the magnetic anisotropy is large, the ex-
change approximation is not applicable, and, generally,
the Fermi surface can also be sensitive to other order
parameters. Experimentally, the transitions discussed
would be of the second order and similar to the ordinary
lattice or AFM instabilities, as concerns, say, the specific-
heat and bulk susceptibility anomalies. The above phases
may exist not only in the heavy fermion and high-T, ma-
terials, but also in intercalation compounds and organic
conductors.
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