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Monte Carlo Search for the Flux-Lattice-Melting Transition in Two-Dimensional Superconductors
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A Monte Carlo simulation of the vortices in a two-dimensional type-II superconductor shows that the
correlation length, which measures the range over which triangular lattice ordering of the vortices exists,
diverges to infinity in the zero-temperature limit, just as predicted by a scaling argument based on phase
fluctuations. No evidence is found for the formation of a vortex-lattice phase at a finite temperature.

PACS numbers: 74.40.+k, 74.60.—w

It is widely believed that in a thin film of a type-II su-

perconductor, the vortices present in a magnetic field will

form a triangular lattice below a nonzero transition tem-
perature TM. The melting of this vortex- or flux-lattice
phase has been investigated theoretically by Huberman
and Doniach [I] and also by Fisher [2], who argued that
the melting mechanism was that of dislocation unbinding.
Monte Carlo studies [3-5] on various approximations to
the full Landau-Ginzburg partition function have been
claimed to be consistent with the existence of a flux-

lattice phase, as have experimental studies [6].
We shall present here the results of a Monte Carlo

simulation which are in complete disagreement with the
existence of an Abrikosov flux-lattice phase at finite tem-

peratures, but which are in full agreement with the pro-
posals previously made by one of us [7,8] (see also [9]).
It was argued in [8] that the lower critical dimension of
the Abrikosov flux lattice was four, because phase
changes induced by thermal excitation of the elastic shear
modes of the lattice destroyed superconducting phase
coherence below four dimensions (the lower critical di-

mension fell to three in the commonly employed approxi-
mation of keeping the vector potential A fixed [8]). It
seems natural to conclude that the absence of long-range
phase coherence would result in the nonexistence of the
flux-lattice phase in two- and three-dimensional systems.
It was noted that in three-dimensional systems the length

scale over which order is lost is very large, of the order of
millimeters, so this eff'ect of thermal fluctuations is prob-

ably undetectable experimentally [8]. It was suggested,
however, that the consequences of the phase fluctuations
in two-dimensional systems should be readily seen, and

our Monte Carlo simulations in two dimensions bear this

out and provide strong evidence that no flux-lattice phase
exists at finite temperatures. These simulations show that
as the temperature is lowered, the correlation length,
which measures the range over which triangular lattice
ordering of the vortices exists, diverges to infinity in the
zero-temperature limit.

The starting point of the calculation is the Landau-
Ginzburg free-energy functional of the complex order pa-
rameter y(r) in a fixed vector potential A(r),

As usual p, P, and a(T) are phenomenological parame-
ters [11], T, is the mean-field, zero-field transition tem-

perature, and D= —ikey —2eA. For thin films it is a

very good approximation to ignore fluctuations in the vec-

tor potential A since the length scale associated with

changes in the magnetic field is of order k /d, where A, is

the bulk penetration depth and d is the film thickness
[10]. This length scale can become of macroscopic size

for very thin films. Even if this is not the case, we do not

believe that using the approximation that A is fixed and

nonfluctuating changes the essential physics in two di-

mensions [8]. This approximation also has the virtue of
having been extensively used by other authors [3,11,12]
and comparison with their results provided useful checks
on our Monte Carlo procedure.

The crucial improvement in the simulation reported
here is that our two-dimensional system is the surface of
a sphere rather than a plane as in other Monte Carlo
work (e.g. , [3]). This cuts down finite-size efl'ects

dramatically as has also been observed in similar numeri-

cal studies of the quantum Hall efl'ect [13]. At the center
of the sphere one places a monopole which produces a ra-
dial magnetic field B so that at the surface 84zR
where R is the radius of the sphere, A is the number of
vortices, and @0 is the flux quantum. The vector potential
can be chosen to be 3"=0,3 =0, and A~=BRtan(0/2)
in the usual spherical polar coordinates. The thermo-

dynamic limit is obtained by taking the limit Ã--

R — ~, with B fixed.
The order parameter y(0, &) can be expanded in terms

of the angle-dependent factors of the eigenstates of the
operator D /2p. The form of these has been studied in

[14]. Those spanning the lowest "Landau" level are the

orthonormal set

!tt (O, tlt) =g sin (0/2)cos (0/2)e' (2)

with m =0, 1, . . . , N, g =[(N+ I )!/4trR m!(N
—m)!]', and all have the eigenvalue eBh/lt. The usual

approximation will be made of keeping only states in the
lowest level [3,11,12]. We have shown that the use of
this approximation does not alter the argument why

phase fluctuations will destroy the order in two dirnen-

sions [8].
With y restricted to the eigenstates of the lowest level,

one can write
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m 0

with Q = (+o/PdB) 'i . The free energy becomes in terms of the (complex) expansion coefficients v

1V 1V

F[v ]/k&T, =aT g v~v~+ g W(m+p, m, n)v vpv„v 6 +p „+„,
m =0 m, p, n, r =0

and aT =dQ aH with aH =a+eBh/p Her. e

+ 2(N+1) f(m+p, m, n)f(2N —m p, N— m, N——n)
N (2N+ 1) f(2N, N, N)

(4)

(5)

with f(x,y, z) =x!/[y!z!(x—y)!(x —z)!]' 2"+ .
The partition function now becomes (up to a multipli-

cative factor) the 2(N+1)-dimensional integral

! tion times become very long, and this prevented us from
going belo~ aT = —10. The first 10 steps were discard-
ed at all temperatures. Thermal averages were as usual
computed by replacing them by "time averages. "

To check our program, we calculate the entropy S per
vortex, defined by

z=
JV

2
—Fft'nt)/kg Tc

V" m-0
(6)

Notice that all the dependence on the physical parame-
ters is contained within the dimensionless parameter aT.
Low temperatures correspond to large negative values of
aT. Mean-field behavior is recovered in the limit aT goes
to minus infinity, which corresponds to zero temperature.
In this limit fluctuations about the mean-field solution be-
come negligible.

It is useful to reexpress the expansion of Eq. (3) in

terms of spinor variables. Up to an overall (complex)
amplitude

(8)

where So=daHQ kaT„and we shall take aH (=|]aH/
8T) to be temperature independent. For N =40, 60, and
80, the entropy per vortex was found to be N independent
down to aT= —10.

Ruggeri and Thouless [11] and Fujita, Hikami, and
Brezin [12] have obtained series expansions for the
specific heat in powers of the coupling constant P. The
latest series extend to eleven terms [12]. We obtained an
estimate for the specific heat by numerically differ-
entiating our entropy S with respect to aT, and normal-
ized it to the mean-field prediction for the discontinuity in
the specific heat h, C. Figure 1 shows that our Monte
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FIG. 1. Specific heat as a function of aT for N =80, calculat-
ed by numerical differentiation of our Monte Carlo estimate of
the entropy, normalized to the mean-field jump h, C at the tran-
sition (continuous line). The results of the [5,5] Pade-Borel ap-
proximant derived from the series of [12] are shown as O.

JV

y(8, p) —+ (vu; —uv;), (7)
i I

where u =cos(8/2)e '~i and v =sin(8/2)e'~i . When
u =u; and v =v;, y =0, so u;, v; specify the position of
the ith vortex, defined as a zero of y. For given [v

the values of 8; and p; are obtained for i =1, . . . , N,
by solving for the complex zeros of the polynomial

g~-ov~g~z, where z =v/u =tan(8/2)e'~
The multidimensional integral of Eq. (6) was evaluated

by a Metropolis Monte Carlo algorithm. An initial
configuration of the complex coefficients {v } was chosen
at random and a coefficient picked out randomly. Its
value was altered by a random complex distance such
that the magnitude of the change in the coefficient was

less than t. . e was chosen so that, on average, half of all
attempted changes were accepted. Next, we calculated
hF/k&T„ the change in the free energy associated with
the proposed alteration of the one coefficient. If h,F were
negative then the change in the coefficient was accepted;
otherwise a random number was generated between 0 and
1 and the coefficient was changed only if exp( hF/—
ksT, ) was greater than this random number. Notice
that changing the coefficient simultaneously moves a11 the
vortices. Defining a Monte Carlo step as N+1 attempted
moves, it was found that 10 Monte Carlo steps were re-
quired for N =40, 60, and 80 down to aT = —10 (2x 10
and 3x10 steps were required for very low temperatures,
i.e., —7&aT & —10). At low temperatures the relaxa-
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We construct the "harmonic" transform of the vortex
density

r 2m

p! =R z dg„d8sin8p(8, $) YP*(8,$)/R
N

=(I/R) g YP*(8;,y, ). (10)

This quantity is analogous to the Fourier transform p|,
of the vortex density on the plane, (I/JN )P;=ie
We define the rotationally averaged "structure factor"

S =(pPp *)

via

1 1
S,=, g g (Y!P(8,, y, ) VP*(8,, q, ))

R 2l+1 m —(ij t

N

g (P((n; n, )), (I I)
2Nn i,j-)

where n; =(sin8;cosp;, sin8;sing;, cos8;), P! is a Legendre

Carlo estimates for C/d, C are in very good agreement
with the [5,5] Pade-Borel approximant deduced from the
series, provided the approximant is constructed to give
C/AC 1 as ar —~. We believe the generally good
agreement checks our program and the utility of studying
vortices on the surface of the sphere. (Our studies of the
specific heat on the plane showed that there finite-size
eA'ects were large. )

We next examined the growth of crystalline order as
ar is decreased. The vortex density at the point (8,&) on

the surface of the sphere is defined as

N

p(8, $) = g b(8 —8;)B(y —y;)/R sine.

polynomial, and R is measured in units of the magnetic
length P'~, where 2zrP =go/B =(J3a /2, a is the spacing
between vortices in the vortex lattice). I/R is equivalent
to jkj on the plane.

Figure 2 shows plots of St vs I/R for I ~ I for N =40,
60, and 80 at aT = —6 and for N =80 at aT =+6. In the
high-temperature example, aT =+6, there is a broad
rounded peak in S( characteristic of the fluid flux. As the
temperature is lowered (i.e., as ar becomes more and
more negative) peaks in St appear where I/R =

j G j,
where G are reciprocal-lattice vectors of the infinite tri-
angular lattice, and the peaks grow in height and shrink
in width. We have plotted in Fig. 3 the peak height S~„.k
associated with the smallest value of jGj vs ar and a

good straight line is found for —10& aT & —3. For
most of this region the error bars on the peak heights (ob-
tained by averaging over several runs) are small, and
have been omitted for clarity. Below aT- —8, long re-
laxation time effects become very important and the
N =60 and 80 error bars begin to grow very large. The
number of Monte Carlo steps was increased to 2x10
steps for N=60 and to 3x10 steps for N=80 for
—10& aT & —8.

It will now be shown that it follows from simple zero-
temperature scaling arguments that S~,k should indeed

vary as aT for large negative values of aT. The correla-
tion length g associated with triangular lattice ordering
will diverge to infinity only at T=0 (i.e., for tzT = —~ in

our notation), on the assumption that there is no transi-
tion at finite temperature to a vortex lattice state. From
general phase-transition arguments, S~,k-g " where

for a zero-temperature transition it is always the case
that 2 —

tI =d provided the ground state is nondegenerate,
so tI =0 in two dimensions [15].

We next develop a zero-temperature scaling argument
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FIG. 2. Structure factor S! vs I/R for N =40, 60, and 80 at

aT = —6 and for N =80 at aT =+6. The arrows on the abscis-
sa denote the positions of the reciprocal-lattice vectors jGj of
the triangular lattice.

40

FIG. 3. Peak height S~,k vs aP for various system sizes

(0=40, & =60, and & =80), which give the biggest value and,

hence, the best estimate of the true peak height.
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for the dependence of the correlation length g on aT. In

[7,8], it was shown that shear motions of the lattice in-

duce phase variations. The effective free energy of the
Goldstone mode associated with phase fluctuations is

given in two dimensions by [7]

F,rr/klrT, =
2

I d rc6sP (V~A) (12)

where c66 is the mean-field shear modulus of the lattice
(of order aT [7]), 0 is the phase of the order parameter
(in Ref. [8], a gauge invariant prescription for defining 0
was given), and Vi =t) /t)x + t) /|)y . If there is a phase
change of order 2n over a region of linear extent g, then
the free-energy cost (divided by kn T, ) is of order
cssP g . When this quantity is of order 1, phase coher-
ence on the length scale g exists, which implies that the
phase coherence length g-iaTia. Thus, provided the
correlation length for phase Iluctuations and for the
length over which triangle lattice ordering exists are the
same (and for most phase transitions, including zero-
temperature transitions, there is only one correlation
length) we would predict that Sn„k-aT as aT
The data of Fig. 3 support this identification of length
scales.

Above aT = —3, the data for the peak height are larger
than predicted by the aT formula, but this is readily un-

derstood since as aT 0, g will remain finite rather than
vanish like i aT i. In other words, ar ) —3 is outside the
zero-temperature scaling regime. By comparison with

Fig. 1, we can see that most of the data in Fig. 3 are in

the temperature regime where the specific heat has
reached its low-temperature limiting form.

A full analysis of the structure factor as a function of
aT and N, and also of the specific heat, will be published
elsewhere [16].

It might be argued that a phase transition could still
take place at temperatures much lower than those we
were able to investigate. Indeed, in [3] it is claimed that
the melting temperature was (in our units) for aT be-
tween —10 and —12. Unfortunately, insufficient detail is
given in [3] to judge how this conclusion was reached.
Unless care is taken, long relaxation time effects can easi-
ly be mistaken for a phase transition. We are confident

that no such transition exists since it seems improbable
that the data in the range —3 ) aT ) —10 would be de-
scribed by zero-temperature scaling if there were a
finite-temperature phase transition.

In conclusion, we have provided strong numerical evi-
dence that no Abrikosov flux-lattice phase exists in two
dimensions and that the mechanism of its destruction is
the phase fluctuations associated with the shear modes of
the lattice.
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