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New Low Density Phase of Interacting Electrons: The Paired Electron Crystal
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A variational method shows that for a range of densities the compensated low density interacting elec-
tron system possesses a ground-state crystalline phase with L =0 spin-singlet pairs and with an energy
lower than the Wigner crystal. The physical origin of the additional binding is intrapair exchange re-
sulting from wave-function overlap and cooperative anharmonic behavior.

PACS numbers: 71.45.Nt, 05.30.Fk, 71.10.+x, 74.65.+n

The quantum many-body problem of N interacting electrons confined to a volume V (N/V =p,) containing a rigid
continuum of compensating charge has been an important model system in the development of condensed matter phys-

ics. The Hamiltonian for this system,
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(where p® and 5 are two- and one-particle density
operators), has considerable symmetry, and it is well
known that at high densities, or small values of the linear
spacing parameter r; [(47/3)rdag =1/pol, the states cor-
respond to a homogeneous Fermi liquid. However, for
quite low densities Wigner proposed [1] in 1934 a ground
state that breaks the symmetry of H, forming a mona-
tomic three-dimensional antiferromagnetic crystal. This
state appears to emerge in simulation studies [2] at
rs Z 100; unlike classical systems the melting transition to
the homogeneous phase has a large value of the Lin-
demann parameter (~0.28) and indicates that anhar-
monic effects can be important. Independent of phase,
the ground-state energy of (1) is bounded below [3] by
—N%rs Ry.

The question we pose and answer in this Letter is
whether in a range of densities the symmetry of H can be
broken again, by permitting the electrons to condense
into a crystal of singlet pairs. Put in other terms, can the
energy be lowered further by removing the implied con-
straint of the Wigner crystal to spatial Bravais lattices?
We shall see that the expected electrostatic penalty is
more than recouped from exchange resulting in a distinct
preference, over monatomic arrangements, for a paired
crystal. Thus, the proposition is that there exists an an-
tisymmetrized (4) many-electron state of (1)
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(where the W(Z) are singlet pair states localized at the
sites of a lattice {R;}) which is energetically lower than
the monatomic equivalent. We argue in this Letter that a
variational state which ignores interpair exchange al-
ready gives an energy lower than the conventional crystal.
It further suggests a general tendency towards pairing at
low densities which, as discussed below, can be estab-
lished from a state based on (2) possessing clear links to
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superconducting order in the delocalized limit.

We will focus on the low density regime (r; 2 100) and
especially on the possible physical realization of a crystal
of rotational pairs. In this range of densities the success
of the original arguments of Wigner lead immediately to
a spherical cell variational method with an initial choice
of many-particle states that neglect interpair exchange.
We will therefore report on a simple r-space variational
determination of the ground-state energy of a proposed
paired state of a low density three-dimensional electron
system in a uniform positive background. This state con-
sists of spin-singlet electron pairs in rotational (L=0)
states with their centers of mass vibrating around the
sites of a lattice. Though, as stated, interpair exchange is
ignored in such a trial state, exchange between the two
electrons within each pair, which is a dominant effect, is
included and treated through a Heitler-London ansatz.
The anharmonicities in the motion of each electron re-
ferred to above are also easily taken into account through
the use of the lowest single-particle Morse function. For
a certain range of low densities we show that this trial
state actually has energy /ower than that of the conven-
tional monatomic lattice proposed by Wigner [1].

The calculation proceeds within the Wigner-Seitz
method and the result is therefore independent of the
structure of the underlying lattice. The conventional
Wigner crystal is also treated within the same method so
that a comparison of the two results can be made in a sys-
tematic way. As is well known from comparison with lat-
tice summation methods the errors in energy in this ap-
proach are small for symmetric structures (less than 3 %)
and arise principally from multipole corrections in elec-
trostatic terms. It is important to note that these errors
in electrostatic energies are actually common to both
monatomic and L=0 paired phases and in fact this is
rigorously demonstrable [4]; most importantly the energy
lowering we find exceeds such errors. The spherical cell
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method is basically the one used in the original treatment
by Wigner, although in our analysis we shall emphasize
the distributed nature of the charge of the electrons rath-
er than proceeding with a simple point-charge approach.
What this viewpoint provides is a variational procedure
with respect to the width of the smeared charge density,
and it can then be applied to both problems. For the
monatomic case we recover Wigner’s result; for the
paired crystal, however, we show that the resulting ener-
gy is lower, except for extremely low densities. The most
conservative estimate for solid phases favors the paired
crystal at least for r; <170, when the two phases are
treated within corresponding approximations.

Consider first the monatomic lattice, with Gaussian tri-
al states of half-width o situated around each Wigner-
Seitz sphere center. To within the small multipole
corrections alluded to above the total energy is found as a
sum of contributions from distinct spheres, and per elec-
tron is
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These terms represent the background self-energy, the in-
teraction energy of the electron with the background, and
the electron kinetic energy, respectively, all calculated for
a single sphere of radius rws=rsap. In the case o <Lrws
(where charge “leakage” out of the sphere is completely
negligible) the above results simplify to more familiar
forms [5]. Variation of (3) with respect to o then yields
a minimum at co=rs3/4ao and with a corresponding ener-
gy
9 3
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Equation (7) agrees with Wigner’s result obtained, how-
ever, through a point-charge approach [1].

Now consider the possibility of a paired crystal where
in each neutralizing sphere there is a Heitler-London pair
of electrons in a spin-singlet configuration. A self-
consistency argument allows us to assume L =0 states;
the orientation of the electron pairs is then temporally
random, the pairs themselves being uncorrelated. In such
a case there are no additional higher multipole contribu-
tions (on the average) from each pair, and the assumed
rotational pair state can therefore be self-consistently sus-
tained. The total energy per pair can be determined
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again by consideration of a single sphere (but now of ra-
dius rws =2"rsap), the total energy per electron being

=;—(5bb+feb+fHL)» (8)

where ey is the energy of an assumed two-particle
Heitler-London variational state in each pair. To illus-
trate the physical origin of the terms favoring pairing we
begin with Gaussian states, namely,

1
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These are symmetrically placed around the center of the
cell, they are separated by R (=r,—r1y), and they have
overlap

S=¢ RU ()
Once again we can determine ¢, and €. exactly. The
term ey can also be determined analytically and consists
of a kinetic energy term and direct and exchange
electron-electron repulsion energy terms. In the final re-
sult Eq. (8) takes the form
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and is just the result we would have obtained had we ig-
nored exchange. The remainder
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is then the (favorable) correction due to the Heitler-
London exchange. Minimization of (13) gives at low

densities oozrf/“ag, R0=rws=2'/3rsao, and an energy
1/3
= 2U2700, 3 gy, (15)
rs rs

but is still a/ways higher than its Bravais lattice analog
(7). The result (13) is consistent with and in fact gen-
eralizes (to 0=0) a previous result [6] for the Madelung
energy of an isotropically averaged Pa3 structure, ob-
tained with a lattice sum (with the only replacement of
the fcc Madelung constant with — % . as should be ex-
pected from the use of the Wigner-Seitz sphere method).
Inclusion of exchange (14) alters the result for oo and Ro
only slightly, except for high densities (r;~10) where
pairing is actually favored (see below) but where, howev-
er, we have charge leakage out of the sphere. Thus at the
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level of Gaussian trial functions exchange is insufficient
at low densities to promote pairing.

But the form of the potential experienced by each elec-
tron is actually quite anharmonic (the combination of 1/r
and r? behavior), and this observation motivates the use
of a variational wave function that finally does lead to a
state of lower energy when compared with the Bravais
lattice case. To show this replace the Gaussians in (9)
with the ground states of two displaced Morse potentials
[7] extending inwards. This picture is consistent with

tunneling of each electron towards its partner within the
pair, and again is completely consistent with the assumed
Heitler-London exchange. An entirely analytical treat-
ment is possible for relatively small anharmonicities if we
use an accurate expansion [8] of the lowest Morse func-
tion with respect to the anharmonicity parameter A
[=hw/4D =% (a/c*)Ry/D]. Here D is the depth of
the corresponding Morse potential D(e ~2%¥—2¢ ~%%),
and o is given in terms of the range parameter a by
| w=02D/m)"?a. The expansion is

1 X 1 X
w(x) exp[ TR \/2_ka J ] exp Ny (1—=2) S
=constxe ~*27[1+a,(x)A "+ a,(A+ a3 (A2 +a, (002 (16)
with a;(x) polynomials of x/o, and where x is along the
direction of the instantaneous pair axis and is measured
from the appropriate equilibrium position. The new 0004 A
feature here is that as expected these states are asym- %l¥l oot
metric around their “centers” [x =0 in (16)] and we have -0.006 | ¥ 0.008
to select an orientation for each of them. As discussed -oooeL 0.004
above, tunneling arguments suggest that we use orienta- ’ 100 200 F
tions pointing to the center of the cell (see upper inset to 0010
Fig. 1), while we retain a Gaussian form along the y and '
z directions. With the use of an isotropic average of this } -ooi2
trial state over axis orientations, all the relevant quanti- <(Ry)

ties can then be determined in closed form, and from the
results we can recover the previous results for the Gauss-
ian case in the limit A— 0. For A#0 the energy gain in
€e» that results from the large overlap of the two Morse
functions (or equivalently from the considerable accumu-
lation of charge around the sphere center appearing in
the single-particle density [4]) actually prevails in the
competition from the energy penalty due to the electron-
electron repulsion. The final result for the total energy
per particle then drops below the monatomic analog even
at values of the anharmonicity A as low as 0.04 (for
rs~100). This/justiﬁes ex post facto our expansion (16)
in powers of A2 (and small values of A should certainly
be expected since the electrons are deeply localized at low
densities).

The required value of A at every density can actually
be fixed by using a simple self-consistency argument on
the depth of the potential that each electron feels in the
presence of the other (which is being assigned a similar
variational function). In the most conservative case
where the “source electron” gives a Gaussian charge dis-
tribution, we obtain
3 2l/3
K(r;)zg rsl/z .
This is expected to be a lower bound for A, since the use
of the Morse function can numerically be shown to give
values a little higher than (17) and correspondingly lower
values for the total energy. Using (17), however, as the
least favorable case, we perform the variation of ¢ with
respect to o and R and at the minimum we obtain a total
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FIG. 1. Total energy per electron as a function of r;. Points
(including an interpolating curve): the paired electron crystal.
Upper solid curve: the monatomic crystal within the Wigner-
Seitz method. Lower solid curve: the Wigner crystal but
beyond the Wigner-Seitz approximation [2,9]. Dashed curve:
the Lieb-Narnhofer lower bound [3]. Upper inset: The proba-
bility density |y|? for a single electron from a given pair (the
one centered at x=—R/2). Here x is along the instantaneous
pair axis and C denotes the center of the cell. The wave func-
tion y is given by (16) but with x replaced by x +R/2. The
choice of density corresponds to r; =100 (with R =110ay,
0 =43ao, and A =0.0756). Lower inset: Effect of exchange and
anharmonicity on the total energy per electron, for r,=100.
Solid curve: the final result for combined exchange and anhar-
monicity. Long-dashed curve: including anharmonicity but ex-
cluding exchange. Dot-dashed curve: harmonic case including
exchange. Short-dashed curve: harmonic case excluding ex-
change. It is the combination of both exchange and anharmoni-
city that lowers the energy below that of the monatomic Wigner
crystal (émon).
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energy that for r; <170 is lower than the monatomic
equivalent (7). We note that for r, < 140 it is even lower
than the more accurate energy of the Wigner crystal as
given by Carr [9], which from the lattice dynamics
viewpoint includes anharmonicities and intracell correla-
tions, the latter being essentially identical to simulation
results [2]. Since this result is a variational upper bound,
it shows that at least at these densities the paired crystal
is energetically favored within the small but common
multipole corrections. Pairing is absent at extremely low
densities because eventually the anharmonicity is simply
too small [Eq. (17)]. A representative result of the
minimization procedure for r; =100 is given in the lower
inset to Fig. 1; the energy of the paired state is compared
to the energy of the monatomic state and to a lower
bound [3] in Fig. 1 itself.

More interestingly, the results also show that the
paired phase is favored when compared to the homogene-
ous liquid phase at even higher densities. Although at
such densities the minimizing values of o( begin to ap-
proach a considerable fraction of the cell radius implying
an eventual leakage of charge out of the sphere, the re-
sults nevertheless demonstrate a tendency of the paired
phase to persist at densities higher than those of the crys-
tal. To investigate such a density range, a detailed
many-body description of the paired crystal going well
beyond the spherical cell model and taking into account
interpair correlations can be given [4]. It is based on the
state (2) but rewritten as

)2 fd3’l c-dPrvF(nisy, ... rsy)
XV/;,(H)"- WJN(rN)l0>, (18)

with
F=C’Mfilj(risisrjsj),

where the product is over distinct pairs [each belonging to
a site labeled by /; see (2)]. The actual form of fj; can in
principle be determined variationally. The state (18)
with F given by (19) can also be written as
|W>=Cd* (R])"'dJr (RN/2)|0>,

Si2 SN—IN

(19)

(20)

with R, the center of mass of the two electrons constitut-
ing a pair localized on site /. The operators d" are given
by

dst/(R[) =fd3r,-d3r,-ﬁ’j(r,-s,~,rjs,~)|//st(r,~)l//fj(rj)
=cXe “Mo@@X ()it q2.5¢ Lxrarns, -
q k

@n

where in the last line we have separated the motion of the
center of mass by writing f;; ~®((r;+r;)/2)¢(r;,r;),
with ¢ taken as symmetric with respect to interchange of
r;,r; as required for spin-singlet pairs. In (21) ®(q) is
the wave function describing the motion of the center of
mass and ¢(k) the wave function describing the internal
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structure of each pair, all in wave-vector space. [For ex-
ample, the choice (9) and (10) corresponds to the state-
ments  ¢(k)~e “¥*"cos(k-R) and ®(q)~e ~°974].
This approach provides a unified description not only of
the pairs but also of the phonons associated with the
motion of their centers of mass; it also suggests new vari-
ational states for the paired crystal to be used in Monte
Carlo simulations, beyond those that have been used so
far [2] that essentially enforce a monatomic crystal.
Moreover it can also be shown [4] that complete delocal -
ization [where ®(q) ~&(q)] of the pairs’ centers of mass
leads, as density increases, to a superconducting state for
an emerging electron liquid. Such a state is anticipated
from a generalization of an argument by Leggett [10]
and it is an intriguing possibility, since it appears now as
an intrinsic property of the electron gas problem, at least
at low densities. It naturally brings to mind recent claims
on universal behavior [11] for all exotic low density su-
perconductors; indeed a combination of our results with
the system’s lower bound on energy [3] actually gives an
upper bound for the critical temperature 7.. In this
respect we are also currently investigating the two-
dimensional analog of the present calculation where the
charge fluctuation effects underlying the effects discussed
above are enhanced. Finally, the existence of localized
paired states gives at each site of a crystal an object with
internal electron dynamics, and this structure can be re-
vealed through a local polarizability. This leads to possi-
ble additional lowering in correlation energy (and further
favoring of the paired state) through the standard fluc-
tuating multipole and polarization wave mechanisms
[12], beyond those already present in the conventional
Wigner crystal.
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