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Optical Vortex Solitons Observed in Kerr Nonlinear Media
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Optical vortex-soliton filaments are observed in a bulk self-defocusing Kerr nonlinear refractive medi-
um. . The dark cylindrical core, located at the axis of a 2z helical phase ramp, is stationary and stable,
with a size that depends inversely on the field strength. %ave guiding of a weak probe beam within the
core is reported. A single optical vortex soliton was experimentally created using a quasihelical phase
mask. Pairs having opposite topological charge were experimentally and numerically investigated using
a convective Kelvin-Helmholtz instability of dark soliton stripes.

PACS numbers: 42.50.Rh, 03.65.Ge, 42.65.Jx, 67.40.Vs

It is well known that an intense light beam induces re-
fractive index changes in many materials. In a self-

defocusing-type medium, the refractive index decreases
with intensity, and owing to the law of refraction, the
beam spreads into regions of low intensity. A Gaussian
spatial intensity profile, for example, will induce a nega-
tive "lens" in the medium resulting in accelerated beam
diffraction [1]. This "blooming" eff'ect has limited uses.
Richer nonlinear dynamics and opportunities to develop
more elegant devices are possible by introducing a non-

planar phase profile in the transverse cross section of the
field. Perhaps the most fundamental two-dimensional
phase profile for a scalar wave is the vortex, i.e., an angu-
lar 2n phase ramp. In this Letter we report the first ob-
servations of optical vortices in a self-defocusing medium
where the field pmpagates as a soliton, owing to the
counterbalanced eff'ects of diff'raction and nonlinear re-
fraction, which respectively broaden and narrow the in-

terference trough (or core) at the phase singularity. This
dark vortex core is stable and stationary [2], and appears
as a dark filament within a bright background field. The
optical vortex soliton (OVS) is the only known cylindrical
soliton in nonlinear refractive media [3]. In contrast to
vortices in linear media which are governed by the super-
position principle [4] (i.e., they diffract), these nonlinear
waves are stationary, and can be shown to obey hydro-
dynamic principles, as do nonlinear waves in other sys-
tems, such as slightly detuned laser cavities [5].

Under high intensities a Kerr nonlinearity is most fre-
quently encountered (at least initially), i.e., n =n p

+n2~E~ /2= np hn, —whe—re np is the linear index, n2 is a
nonlinear coefficient, and E is the field amplitude profile
in the transverse plane, (x,y) or (r, 8). The self-focusing
case (n2) 0) is unstable and leads to catastrophic beam
collapse [6,7]. Despite its inherent stability [8], the de-
focusing case (nq&0) has attracted less interest. The
(2+1)-dimensional nonlinear Schmdinger (NLS) equa-
tion describes propagation through a bulk defocusing
medium:

where u =E/E is the normalized field amplitude,

u (R, O, Z) =3 (R)exp(iMB)exp(i2Z), (2)

where M = + 1 is topological charge, A (0) =0, A (r
~) 1, and our numerical calculations show that

A(R) =tanh(R/Rp), where Rp= 1.270 is a constant.
(This amplitude function produces less than 0.5% fluctua-
tions in the beam size, negligible radiation, and a correla-
tion coefficient of 0.999 when compared to the numerical
solution. ) This stationary wave can be called a soliton
because small-scale perturbations do not produce instabil-
ities [8]. The field profile along a line through the vortex
center is identical to that of a fundamental dark soliton
stripe (DSS) [9,10] (up to the scale size Rp), with both
having a z phase discontinuity. Whereas a DSS has rec-
tilinear symmetry in the plane and the phase step defines

~E ~
/2 is the background intensity (i.e., at R ~), and

R =r/w Ni and Z =z/zNL are the normalized radial
and longitudinal coordinates, respectively, with wNL
=kp(hnNL/np)' and zNL' =kphnNL/2np, kp the wave
number, and AnNL= —n2~E

~
/2. The transverse Lapla-

cian V& accounts for diff'raction, i.e., the creation of
transverse wave vectors k& which are redirected by the
nonlinear term 2~u~ . The nonlinearity tends to make the
beam more planar when n2 &0, i.e., the variance (or rms
value) of k& decreases with increasing intensity. This can
be shown by calculating the expectation integral of the
Fourier-transformed wave equation and writing k = (k
—8k, ) + (Bk & ) . We obtain var(bk ~ ) =var(bk & )p

2k'(rl(k)/np), where var(Bk~)p is the linear variance
of the transverse wave vector, and rl =FThnE]/FT[E] is
a ratio of Fourier transforms. This minimization of the
variance may be interpreted as a global generalization of
Fermat's principle applied to nonlinear optics, e.g. , the
system finds the state which minimizes the rms optical
path length in a self-defocusing medium. (In contrast,
the variance of the angular spectrum increases in a self-
focusing system. ) Qualitatively we find that for a highly
nonlinear system, the beam structure collapses into nar-
row dark filaments having phase singularities. Tur-
bulence and chaos may be expected when higher-order
effects like dispersion are included.

The single-vortex solution of Eq. (1) is written [2]
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FIG. I. Experimental apparatus. A laser beam passes
through a mask with transmittance t(x,y) near the input face
of a nonlinear cell having n2&0. The Mach-Zehnder inter-
ferometer allows phase measurements. A probe can be made to
copropagate with the pump beam to observe wave guiding.

a domain wall, an OVS has circular symmetry. This is

analogous to states in type-I and type-II superconductors.
Because experiments require beams of finite size, the
gross eff'ects of diff'raction and self-defocusing will reduce
the field strength as the beam area widens. We numeri-
cally confirmed that lE(z) liie, kwNL(z) = (ko I&21)
remains relatively constant as long as the beam size is
much larger than wNL.

Because plane waves are stable in defocusing media, an
initial field profile is required to initiate nonlinear waves.
This is done experimentally by placing a thin mask with
complex transmittance t(x,y) near the input face of the
nonlinear cell (see Fig. 1). The output face of the non-
linear cell is imaged on a charge-coupled-device (CCD)
camera to record either the intensity profile, or an inter-
ferogram of the phase profile using a Mach-Zehnder in-

terferometer. The experiments were performed in a cell
of length 22 cm, containing slightly absorbing liquid [1],
and using a collimated cw argon ion (514 nm) laser beam
with diameter = 2.5 mm. A single vortex can be formed
using a helical phase mask t =exp(i8); however, to avoid
the difficulty in forming such a mask, we used the sim-

plest approximation: three regions with uniform phase
retardations (0, tr, and 2n), as shown in the inset of Fig.
2. The intensity profile [Fig. 2(a)] shows a black node, as
expected, at the output face of the cell. This node is

confirmed to be a vortex in the interferogram [Fig. 2(b)l,
which shows two equiphase lines converging into one (this
vortex signature was observed at any angle of the refer-
ence wave). Our observations also confirmed that the
node size was stable and could be decreased by increasing

FIG. 3. Wave guiding of a He-Ne probe laser beam within
an OVS filament. The phase mask in Fig. 2 was used, resulting
in some leakage to dark soliton stripes. A wire of width 250 pm
shows the relative size of the filament.

the field intensity. Owing to the higher relative index
with the OVS, we were able to observe wave guiding of a
(He-Ne laser) probe beam within the filament. The in-

tensity profile of the guided beam (with the pump beam
filtered out) is shown in Fig. 3. The bright arms extend-
ing from the filament are an artifact of the three-region
mask, which also produces DSS's that can guide light.
Such leakage may be avoided by using a helical phase
mask. This vortex waveguiding technique could be used
as an ultrafast high-gain modulator, controlled by a tem-
porally modulated pump beam. Radiation pressure
within the core allows other applications.

We now explain how OVS's can form even when vor-
tices are not initially present (for example, when the
phase profile is initially ffat, rather than helical). To con-
serve the net topological charge g;M; in this case, we ex-
pect vortices to appear as oppositely charged pairs. Our
numerical solutions of Eq. (1) reveal that many initial
diffraction conditions can spawn such OVS pairs. To de-
scribe how vorticity can develop in these cases, we consid-
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FIG. 2. Single-vortex-soliton experimental observations. (a)
Intensity profile obtained with the phase mask shown in the in-
set. (b) interferogram of (a), with magnified view of vortex re-
gion shown. The scale is 250 pm.

FIG. 4. Numerical calculations of intensity (a) and phase
(b) profiles for nonlinear propagation past two needles, as
sho~n in the bottom inset. Outside of the shadow region the
solitons decay gracefully into the background. When subjected
to long-period transverse perturbations, vortex pairs of opposite
topological charge are formed o~ing to a Kelvin-Helmholtz in-

stabilityy.
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FIG. 5. Experimental observations of vortices spawned from
dark soliton stripes. In the region corresponding to where the
tips of four needles almost meet, dark nodes are seen, and the
corresponding interferogram (inset) has the vortex signature
(some lines have been darkened to aid the eye).

verse amplitude modulation is added to the field, e.g. ,
E E+ecosqx, where ~&&E, then the soliton velocity
will also be modulated, i.e., AVg/Vs =hE/E +6)v/), q.
(Similar modulations, though of finite extent and having
a continuous distribution of wave vectors, occur when a
diffracting source radiates transverse waves, as in Fig. 4.)
This modulation may therefore sinusoidally distort a soli-
ton stripe with the same period as the perturbation,
x~ =2&/q (at least initially), and may lead to soliton
breakup and decay. This was suggested by Kuznetsov
and Turitsyn, whose rigorous stability analysis predicts
such an instability [12]. On the other hand, we find that
this distortion can vanish (meaning the instability is con-
vective) if the mean value of AVg/Vs is zero when aver-
aged over the characteristic propagation distance z NL,
i.e., when zv—=kx~/x&&zNL (or equivalently, x~&&~gL).
These anticipated stable (xq«wNL) and unstable (x~
))wNL) soliton regimes can in fact be seen in Fig. 4.
While this soliton velocity argument predicts a stable re-
gime, it cannot predict the development of vortices in the
unstable regime; rather we must turn to hydrodynamic
considerations.

The occurrence of vortices and other fluid dynamic
phenomena becomes evident once the NLS is rewritten in
terms of the continuity equation, 2 t)p/t)z+V~. (pv) =0,
and the Bernoulli equations [Eq. (3)] for an inviscid
compressible fluid. This transformation occurs upon set-
ting u =2 exp(ip) in Eq. (I) [7], and defining a phase ve-
locity, or "flow, " v =V~& (except at some singular
points),

V 2 I /2/ I/2 P/p (3)

where p=A and P=p /2 have the meanings of density
and pressure, respectively. In this framework, the helical
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er a simple amplitude mask that displays all the essential
physical processes. The inset in Fig. 4 shows the initial
condition, which in practice can be formed by aligning
two needles along the x axis with tips facing each other.
Because the mask is nearly rectilinear, both one- and
two-dimensional nonlinear phenomena, i.e., soliton stripes
and vortices, may be expected. Numerical calculations of
the transverse intensity and phase profiles are shown in

Fig. 4 in the regions (a) x & 0 and (b) x )0, respective-
ly, with z/zNL= 16 and hnNL/no=5&&10 . In a quasi-
one-dimensional system, dark soliton stripes [10] are the
stationary solutions of Eq. (1) [9],and they are evident in

the numerical calculations shown in Fig. 4 [11] [along
with some radiated (or nonsoliton) waves]. That is, if the
needles were replaced with a long opaque strip (or wire)
of constant width L, then N= rrL/vvNL pairs of DSS's
with soliton eigenvalues Aq=(1 —ks)' cot(kgL/wNL)
would form. However, if the width changes slowly along
the wire as L(y), then fewer solitons are expected from
the thinner regions, and none from regions where a gap
exists. This is indeed what is observed in numerical cal-
culations and experiments. What makes this tapered-
wire case profoundly different and dynamically more
complex than the straight-wire case is the occurrence of
radiated waves that are not parallel to the soliton stripes.
In Fig. 4 the tips of the needles are sources of such
diffracted radiation. As in linear diffraction, those waves
with higher transverse momentum k& propagate fastest
in the plane. In Fig. 4, only those components with long
periods remain in the shadow region of the tips, e.g.,
where black dots have appeared. The calculated phase
profile [Fig. 4(b)] of these dots clearly shows that they
are vortices. These results indicate that DSS's are gen-
erally robust to small-length-scale perturbations, but ex-
hibit a convective instability when exposed to long period-
transverse waves.

To achieve the same qualitative results in the laborato-
ry, we used four needles in a cross configuration, with the
tips separated by = 10 pm. The additional set of needles
were required to overcome the gross effect of self-
defocusing, which tends to deflect the destabilizing wave
vectors out of the beam center, i.e., away from the region
where we expect vortices (this helps to explain why dark
soliton stripes and grids are stable in experiments [10]).
When the beam power exceeded =1.0 W, both the in-
tensity and interferogram confirmed vortex formations,
i.e., dark isolated spots would separate from the soliton
stripes, and a line of constant phase would terminate at
each spot. Figure S sho~s both dark soliton stripes and
vortex nodes, as expected. The inset is an interferogram
corresponding to the outlined vortex region; it confirms
the existence of two vortices of opposite topological
charge.

The onset of the instability can be understood, in part,
by considering that the transverse soliton "velocity" [91 is
given by Vs =As(hnNL/no) ', where we will assume the
soliton stripe is aligned along the x axis. When a trans-
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phase profile in Eq. (2) is characterized by a "circula-
tion" ftv dl =+'2tr, where I is a closed path enclosing
the vortex. The occurrence of vorticity in the field can be
most easily shown by considering the explicit eA'ects of a
phase modulation (which occurs in quadrature with an

amplitude modulation) added to the background field

/[1+csin(qx)], where e«1. When a DSS is

aligned along the x axis, the phase on either side of the
soliton is given by ps(y)[1+csin(qx)l, where pg(y) is

the phase step associated with the soliton. The com-
ponent of the phase velocity aligned along the soliton
is then r)itt/r)x =aqtttg(y)cos(qx). A velocity difference
therefore exists on either side of the soliton; hence the
vorticity is nonzero. Periodic vorticity elements (but not

yet vortices) will exist on the DSS at the positions

qx =Ntr (where N is an integer), with adjacent elements
having opposite circulations. In fluids this phenomenon is

known as a Kelvin-Helmholtz instability, which occurs
when a boundary between two flow develops so-called
vortex streets.

These considerations of the soliton velocity Vq and

phase velocity V&& indicate that a modulated DSS with

xq && H NL will initially break into segments with counter-
circulating vorticity at the ends. Bifurcation of the
modulation period can result in further segmentation.
The final collapse into vortices can be understood by con-
sidering that Eq. (3) is also the Hamilton-Jacobi equa-
tion [7], where the right-hand side is the potential term.
The angular acceleration, |) 8/t)z = |1U/80 (where U
=A /2 —V&A/A), is therefore driven by the field and its

Laplacian, and vanishes once Eq. (2) is satisfied, i.e.,

once the vortex is formed. Well-established hydrodynam-
ic methods and paradigms may be applied to describe the
dynamics of OVS's under more complex initial di[Traction
conditions. For example, using the vortex element tech-
nique [13], DSS's can be treated as two superposed vor-

tex sheets having opposite charges per unit length. In

summary, we have created single and paired optical
vortex-soliton filaments in a self-defocusing optical Kerr
medium. For an arbitrary initial condition, OVS's may
develop if the average vorticity of the transverse phase ve-

locity does not vanish over a distance zpL.
This work was supported by the Defense Advanced

Research Projects Agency, the Pittsburgh Supercomput-
ing Center, and the Naval Research Laboratory (NRL).
We especially thank E. M. Wright (University of Arizo-
na) for suggesting that our observed nodes were vortices.
We also thank D. W. Hess (NRL) for insights on super-
conductivity, E. A. Kuznetsov (Academy of Sciences,
Novosibirsk) for instability discussions, and A. E. Kaplan
(Johns Hopkins University) for comments on nonlinear

propagation. G.A.S. is an Oftice of Naval Technology
Postdoctoral Fellow.

[I] J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto,
and J. R. Whinnery, J. Appl. Phys. 36, 3 (1965); A. G.
Litvak, Pis'ma Zh. Eksp. Teor. Fiz. 4, 341 (1966) [JETP
Lett. 4, 2 30 (1966)].

[2] V. L. Ginzburg and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz.
34, 1240 (1958) [Sov. Phys. JETP 7, 858 (1958)]; L. P.
Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov.
Phys. JETP 13, 451 (1961)l.

[3] R. Y. Chiao, I. H. Deutsch, J. C. Garrison, and E. M.
Wright, Serge Akhmanov: A Memorial Volume, edited

by H. Walther (Adam Hilger, Bristol, 1992).
[4] J. F. Nye and M. V. Berry, Proc. R. Soc. London A 336,

165 (1974); N. B. Baranova, A. V. Mamaev, N. F. Pili-

petsky, V. V. Shkunov, and B. Ya. Zel'dovich, J. Opt.
Soc. Am. 73, 525 (1983).

[5] P. Coullet, L. Gil, and F. Rocca, Opt. Commun. 73, 403
(1989); F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and

S. Residori, Phys. Rev. Lett. 67, 3749 (1991); S. A.
Akhmanov, M. A. Vorontsov, V. Yu. Ivanov, A. V. Lari-
chev, and N, I. Zheleznykh, J. Opt. Soc. Am. B 9, 78
(1992).

[6] R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev.
Lett. 13, 479 (1964); P. L. Kelley, Phys. Rev. Lett. 15,
1005 (1965).

[7] W. G. Wagner, H. A. Haus, and J. H. Marburger, Phys.
Rev. 175, 256 (1968).

[8] See, for example, A. C. Newell, Solitons in Mathematics
and Physics (Society for Industrial and Applied

Mathematics, Philadelphia, 1985); E. Infeld and G. Row-

lands, Nonlinear WavesSolitons , and Chaos (Cambridge
Univ. Press, New York, 1990).

[9] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz.
64, 1627 (1973) [Sov. Phys. JETP 37, 823 (1973)].

[10] G. A. Swartzlander, Jr. , D. R. Andersen, J. J. Regan, H.
Yin, and A. E. Kaplan, Phys. Rev. Lett. 66, 1583 (1991);
66, 3321(E) (1991).

[11]These results where first reported in G. A. Swartzlander,
Jr. , in Proceedings of 111 Potsdam VKiev Intern-ational

H'orkshop on Nonlinear Processes in Physics, August
l99l (Mathematics and Computer Science Department,
Clarkson University, Potsdam, NY, 1991), and in G. A.
Swartzlander, Jr. , C. T. Law, D. R. Andersen, and A. E.
Kaplan, in Proceedings of the l99l Annual Meeting of
the Optical Society of Americalvoiember , l99l, Techni-
cal Digest Series Vol. 17 (Optical Society of America,
Washington, DC, 1991).

[12] E. A. Kuznetsov and S. K. Turitsyn, Zh. Eksp. Teor. Fiz.
94, 119 (1988) [Sov. Phys. JETP 67, 1583 (1988)].

[13] Seefor examp, le, R. I. Lewis, Vortex Element Methods

for Fluid Dvnamic Analysis of Engineering Systems
(Cambridge U n iv. P ress, New York, 1991).

2506












