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Positronium Negative Ion: Molecule or Atom?
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A highly accurate calculation is supplemented by an adiabatic approximation to explore the resonance
spectrum of the positronium negative ion (Ps ). Surprisingly, the spectrum can be understood and
classified with Hz+ quantum numbers by treating the interelectronic axis of Ps as an adiabatic param-
eter. We report and interpret the existence of 'S shape resonances, a phenomenon so far unknown in
three-body Coulomb systems. The new results on Ps combined with previous results for H suggest
the existence of a resonance spectrum and its similarity for all ABA Coulomb systems with charges
IZq/ZttI =1 and masses mq/ma ~ 1.

PACS numbers: 36.10.Dr, 03.65.Sq, 31.20.Di, 34.80.Dp

Early calculations showed that the positronium nega-
tive ion (Ps ) system composed of two electrons and
their antiparticle, a positron, has a bound state [1]. The
experimental proof [2] in 1981 together with an increas-
ing interest in matter-antimatter interactions have stimu-
lated continuing theoretical investigations of Ps . Re-
cently, selected resonances [3,4], photoabsorption into
low-energy resonances [5], and the ground-state annihila-
tion rate [6] have been studied. However, a systematic
and concise picture of the dynamics of this three-body
system is still lacking. The attempt to achieve such a pic-
ture is challenging and the existence of a systematic pat-
tern questionable at first glance: Three particles of equal
mass and absolute charge tumble in space with their
motion restricted only by the total angular momentum
and parity of the system. Unlike other three-body sys-
tems with the same form of the potential, there is neither
an obvious point of reference as the heavy nucleus in H
nor a line of reference as the internuclear axis in H2+.
These properties contribute to the specific atomic or
molecular structure of H or H2+. Nevertheless, we will

show that the resonance spectrum of Ps is dominated by
the same type of quasiseparable motion as in the molecu-
lar case of H2+, i.e., the three charged particles behave
very much like a molecule where the line joining the two
electrons takes the role of the "internuclear" axis. How-
ever, we will also identify some exotic features unique to
Ps, such as shape resonances for angular momentum S
states. The occurrence of this type of resonance can be
attributed to the delicate balance in the long-ranged di-
pole forces.

We have approached the dynamics of Ps in two
diAerent ways which supplement each other. First, we
have solved the nonrelativistic Schrodinger equation of
Ps in perimetric coordinates [7] with complex scaled
basis-set techniques [8]. This calculation has provided us
with well-converged data on resonance positions and
widths even close to all two-body (positronium) thresh-
olds and the three-body breakup threshold. To prove that
the calculated data essentially reflect molecular-type be-
havior we have performed an independent calculation,

e(r, R) =f(R)

where the interelectronic axis R=Rz is chosen to lie
along the z axis of the coordinate system, and r points
from the middle of R to the positron (see Fig. 1). The
ansatz (1) separates vibrational motion f(R) of the elec-
trons from internal motion @(r;R) and leads to the one-
dimensional vibrational equation

1 d +U(R) —E„f,(R) =0
2m~~ dg2 (2)

with the adiabatic molecular potential

U(R) =(e I H I e)r —=4 (R) +D (R) . (3)

Here, 6'(R) is the eigenvalue of the two-center Hamil-
tonian for fixed R,

h(R) =— 1 p 1p2
2mgg

1+1
r2 R' (4)

with eigenfunction @(r;R). The adiabatic correction

where we treat Ps as a molecule within an adiabatic ap-
proximation. Resonances appear then as bound states in

excited molecular potential curves and decay is formally
described by nonadiabatic coupling to lower potential
curves. The specific form of the potential curves also
demonstrates another possible mechanism for resonance
formation, namely, the occurrence of shape resonances.
The molecular set of quantum numbers as for H2+ pro-
vides a systematic classification of the resonance spec-
trum. The remarkable correspondence between the re-
sults of the exact calculation and the molecular approxi-
mation shows that Ps is essentially a molecule-type sys-
tem. In this Letter we concentrate on the S spectrum of
Ps (angular momentum L=0) since it features all im-

portant aspects and simplifies the notation, which will be
given in atomic units.

The adiabatic molecular approximation (MA) repre-
sents the spatial wave function of an ABA system for S
states by the product
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FIG. 1. Molecular Jacobi coordinates for ABA systems. The
cylindrical components (p, z) of the vector r are defined as

p =R/2[(k —1)(l —p )] 'i and z =R/2k@ in prolate sphe-
roidal coordinates. Lines of constant k (ellipses) and p (hyper-
bolae) are also shown.
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FIG. 2. Adiabatic molecular potential curves [Eq. (3)] for 'S

states of Ps converging to the N=S positronium threshold.
The channel quantum numbers lnln2m) are from the bottom
(040), (130), (220), (310), and (400).

term

D(R) = (ei —v,'+ —,
' v,'ie)1

2@1AA
(5)

is the expectation value of H —h(R). Note that (4) con-
tains the reduced mass m~q =mqmq/(m~+mq) rather
than m~~ q =2m~mq/(2m~+ mg) as in the standard adi-
abatic treatment [where h(R) is given by H at fixed R].
Consequently, the part (I/2m~q —I/2m~~ q)V„of the
kinetic-energy operator appears in (5). The choice of
h(R) and hence 4 in the MA is crucial for a successful
adiabatic description of Ps . In contrast to the standard
adiabatic approximation the MA guarantees the correct
dissociation limit U(R ~) with D(R ~) =0 and
small D(R) for finite R due to the cancellation effect be-
tween the kinetic energies of R and r in (5).

Apart from a mass scaling factor (the reduced mass
m~e= 2 for Ps ), Eq. (4) is identical to the Hz+ Born-

Oppenheimer problem and thus the eigenfunctions 4 are
separable in prolate spheroidal coordinates X=(ri+r2)/
R, p = (r 1

—r 2)/R and the azimuthal angle p where

ri 2=ir+'R/2i are the two electron-positron distances
(see Fig. 1). The nodal surfaces of @ along the coordi-
nates A„p, and p constitute the quantum numbers

n&, n„,m which specify a molecular channel according to
Eqs. (3)-(5). In the dissociation limit R ~ the nodal

surfaces become parabolic with nodes n i =ni, n2 = [n„/2],
where [x] is the integer value of x. The parabolic set of
quantum numbers offers an alternative description with

the convenience that the positronium threshold W to
which a molecular channel converges in the dissociation
limit (Fig. 2) can be directly seen from /V =n|+ n 2

+m+1. Together with the total energy E [described by
the vibrational quantum number v in Eq. (2)] and the an-

gular momentum quantum numbers LM the spheroidal
quantum numbers classify the Ps dynamics so that the
quanta actually count nodes along a well-defined coordi-
nate system. Note that for S states L =M =m =0.

As an example Fig. 2 shows for 'S symmetry all poten-

TABLE I. Energies of the 'S resonances in Ps converging
to the N=5 positronium threshold. The italic numbers are tak-
en from the work of Ho [3].

—E (a.u. )
lnin2m)

(040)

(130)

(220)

Exact

0.01303093
0.012 90
0.011 51961
0.010699 13
0.01033401
0.011 722 82
0.011 70
0.010497 93
0.010 161 16
0.009 940 14

MA

0.01 3 034

0.011 521
0.010596
0.010255
0.011 685

0.010398
0.010092
0.009 91

tial curves converging to the N=5 positronium threshold.
Each of the two lower curves supports a series of Fesh-
bach resonances with (nl, n2, m) =(0,4,0) and (1,3,0).
Grouped according to the molecular classification
scheme, Table I compares resonance energies calculated
in the molecular approximation with previous results [3]
of full diagonalizations and with our highly accurate
values. Good agreement is achieved for the lower vibra-

tional states in the potential curves. In these states
(v= 0) the electrons are on average roughly at equal dis-

tance from the positron whose probability density 4*@is

concentrated between the electrons, a characteristic
molecular binding effect. For higher v the adiabatic en-

ergies become more inaccurate since the MA fails to
reproduce precisely the spacing between subsequent ener-

gies E, and E„+1,which can be checked analytically with

the Gailitis-Damburg theory [9] in the limit v

The third potential curve of Fig. 2 with parabolic quan-
tum numbers (2,2,0) is most interesting since it shows the

possible occurrence of a shape resonance which is indeed

predicted in the MA and confirmed by our exact result

(see Table I). In the MA shape resonances can occur for
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FIG. 3. Energies, parametrized as ( EN 2) '~2, of the-
lowest 'S resonance in each manifold N as a function of 1/N
Solid symbols are from the exact calculation; open symbols
from the MA. At I/N =0 the solid symbol indicates the inverse
actions I/S from the fundamental (asymmetric stretch) period-
ic orbit of the classical Ps motion analogous to [12]. The open
symbol is the extrapolated value from the MA data for 1/N)0. The dashed line gives the positronium threshold energy
Flv i

= —1/4(N —1)~; see text. —

channels with n~ =n2. Then the major contribution to
the long-range tail of the molecular potential from C(R),
proportional to (ni —nz)/R, vanishes, leaving only the
small adiabatic correction D(R). The correction is posi-
tive for large R and thus forms a slightly repulsive barrier
(see Fig. 2). Whether the potential actually supports a
shape resonance cannot be predicted a priori and depends
on subtle features of the dynamics which in the MA are
related to the depth and width of the potential curve.
However, we have identified the corresponding shape
resonance for n1=n2=1 in the N=3 manifold with

E = —0.02745 (exact E = —0.0277436).
Additional light on the subtle nature of shape reso-

nances is shed by the fact that they do not exist in H
where the 'S resonances with n~ =n2 lie below threshold
[10]. The MA also shows that in general S potentials
with the same quantum numbers n~ =n2 and hence a
long-range behavior dominated by the same dipole poten-
tial do not support (shape) resonances. Apart from this
feature (and from substantial differences in the decay
widths which, however, are beyond the scope of this
Letter), 'S and 3S spectra for Ps are very similar.
Hence, for the overall structure it is sufficient to concen-
trate on the 'S spectrum.

So far we have discussed resonant states whose ener-
gies converge to a fixed ttvo-body (positronium) breakup
threshold N as a function of increasing vibrational quan-
tum number v (Table I and Fig. 2). A section through
the resonance structure converging to the three-body
breakup threshold (E=0) as a function of N with
n2=N 1, but n1, m, a—nd v fixed, yields more informa-
tion on the accuracy of the MA over a wide energy range.
Figure 3 shows that the MA energies do not converge to
the exact values in either limit of N; however, the devia-

tion is small over the entire excitation range and of oppo-
site sign in the N limits. The discrepancy in the limits is
not surprising since adiabatic behavior in the interelect-
ronic axis R is not expected for the ground state (N= 1)
and generally breaks down for extremely high excitation
(1/N=0). It is much more surprising that a direct com-
parison with the exact results as presented here actually
verifies that the global pattern of the Ps dynamics is
well described by an adiabatic molecular picture. How-
ever, this simple picture presumably does not hold for ar-
bitrary high excitations N. As soon as the lowest reso-
nance in a potential converging to the threshold N drops
below the energy of the N 1 th—reshold (shown as a
dashed line in Fig. 3), the entire dipole series v ~ con-
verging to the N —

1 threshold is perturbed and the reso-
nances have to be interpreted as perturber states in a gen-
eralized multichannel-quantum-defect theory [11]. One
sees from Fig. 3 that this begins to happen near N=8.
Hence for N)&7 the resonance spectrum becomes very
complicated and any description in terms of individual
resonances classified by a full set of quantum numbers
becomes questionable.

The MA has been shown to be applicable for H [13],
leading to the same type of quasiseparable motion and
resonance pattern. Since the entire three-body Hamil-
tonian changes smoothly as a function of the mass ratio
6=m~/ms from 8=1 (Ps ) to 8 ~ (H ), the new
result for Ps allows us to predict that all ABA systems
with identical absolute charge of the particles but 8) 1

possess a resonance spectrum which has qualitatively the
same pattern. Furthermore, the reduced mass m~q of the
AB subsystem determines a global energy scale and ac-
counts for the major quantitative differences between
spectra of different ABA species. Our prediction extends
similar conclusions for the ground states of ABA
Coulomb systems [14] and the empirically discovered
similarities between low-lying H and Ps resonances
[5].

The prediction for the entire resonance spectrum and
all ABA systems with 8~ 1 is based on the following ar-
gument: The tail v ~ of a series of resonances belongs
to a single potential curve and converges to its positroni-
um threshold energy which scales trivially with m~q since
it is hydrogenic. More surprisingly, the lower end, i.e.,
the energy of states with v=O, scales also with m~~.
This can be understood from the two-center energies
8(R). They scale exactly with m~s at the minimum of
the potential curve and for R ~, a consequence of the
virial theorem [15]. While the dissociation limit reflects
the scaling of the hydrogenic threshold energies, the
minimum energy corresponds to the v=O states. Devia-
tions from the exact scaling behavior result in the MA
from small contributions to the resonance energy which
do not scale, such as vibrational excitation in R, the adia-
batic correction D(R) and, in the case of L&0, a centri-
fugal barrier. These perturbations which are largest for
moderate vibrations v (in the limit v ~ the threshold
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energy dominates the resonant energies and restores scal-
ing) prevent the global scaling from being exact for the
actual spectra. It is also clear that subtle features such as
the 'S' shape resonances in Ps cannot be predicted by
the global resonance pattern.

Our analysis relies on the general scaling properties of
the homogeneous Coulomb potentials and in addition on

the separability of the two-center Coulomb problem [Eq.
(4)]. Hence the conclusions are restricted to Coulomb
systems. However, there is some evidence that the ex-
istence of a resonance spectrum and its quali tati [ e simi-
larity among species with different mass ratio 6 pertains
to a far more general class of ABA systems characterized
by their subsystem AB being bound by a central force.
One example is the nuclear motion of triatomic mole-
cules. Their dynamics exhibits "normal" (or hyperspher-
ical) and "local" mode resonances [16], which play the
same role as for Ps the class of resonances as a function
of lV converging to the three-body breakup threshold
(Fig. 3) and the class of states with diff'erent v belonging
to a single potential curve.

In summary, the investigation of the Ps dynamics ob-
tained by highly accurate full diagonalization methods
and within the framework of an adiabatic molecular ap-
proximation has demonstrated the molecular nature of
Ps . We have shown that over a wide energy range the
three particles of equal mass are far away from tumbling
about their center of mass but their motion is strongly
structured and the resonance spectrum appropriately
classified with H2+ quantum numbers. Our combined
analysis has also uncovered the existence of 5 shape res-
onances, a new phenomenon in three-body Coulomb sys-
tems. The molecular structure allows the prediction that
ABA Coulomb systems composed of particles with equal
absolute charge but diff'erent mass ratios m /mtt, q

) I fol-
low a universal resonance pattern reflecting the Coulom-
bic nature of the interparticle forces. The resonance
spectra of individual species differ mainly by a scale fac-
tor for the energy, the reduced mass rn&8 of the respec-

tive AB subsystem. This is a powerful result since it pro-
vides a rough picture of the resonance structure for many
exotic particle combinations (e p e, p pp, etc. )
which may be realized experimentally in the near future.
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