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Improving Large-Order Perturbative Expansions in Quantum Chromodynamics
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We consider divergences of the perturbative expansions in large orders in quantum electro- and chro-
modynarnics and concentrate on the dependence of large-order contributions on the choice of the nor-

malization point of coupling constants. We find that for sign-alternating series the predictive power of
perturbation theory as measured by the minimal term of an asymptotic expansion can be drastically im-

proved by a proper choice of the normalization point. In particular, this allows the elimination of the
leading uncertainty of perturbative expansions in quantum chromodynamics.
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Recently large-order estimates in quantum chromo-
dynamic (QCD) perturbation theory have received new

impetus [1-3]. One of the main issues discussed is to
what extent the perturbative predictions are plagued by
the asymptotical nature [4] of the perturbative expan-
sions.

In particular, we shall be concerned with the imaginary
part of the electromagnetic current correlation function

( —i )J d xe'v"(O~T(j„(x)j„(0))~0)

= (q„q,—g„,q ') I1(q -')

in QCD and quantum electrodynamics (QED) with N
massless fermion Ilavors. In QCD it is related to the total
hadronic cross section in e+e annihilation by

R(q )= e +e — hadrons

e e —.p p

= 12n Iml1 2, ttgco(u ) + O(ttQEo)q

p

and is therefore of direct physical meaning.
The leading large-order contributions come from the

so-called renormalons [5], which are potentially most im-

portant as limiting the predictive power of perturbative
expansions. Namely, a generic perturbative expansion in

the QCD running constant looks like

f(aoco(Q)) =gp, ttQ+o(Q),

where f(aQco) is, say, II(Q ) (Q'= —q-' denote Eu-
clidean momenta). The asymptotics of the expansion
coefficients p„is controlled at large n by the ultraviolet
renormalon:

lim p„=constxbpntn
n

where d is some constant and bp is the first coe%cient in

the P function so that bo is negative in QCD. Dealing
with (I ) as with ordinary asymptotic series, one con-
cludes that the perturbative series approximates the phys-
ical quantity to accuracy no better than [3]

2

6I1(Q ) =constx ~QCD

~here AQcD is the position of the pole of the running cou-
pling (see below). Thus one comes to consider Q
terms which are usually omitted from the phenomenologi-
cal analysis (see [6] and references therein). Note also
that Q terms were also introduced in [2] on general
grounds.

So far we discussed expansions in aQcD, as if the latter
were uniquely defined. In fact the definition of eQcD is

subject to an arbitrariness due to the choice of renormal-
ization scheme (RS) and normalization point (scale).
This scheme-scale ambiguity is a well-known problem in

low orders [7]. In case of infrared stable quantities such
as I1(Q ), scale dependence is usually dealt with by nor-

malizing the coupling parameter at Q which absorbs all

logarithms into the definition of the coupling. Also, it has
become conventional to perform calculations in the
modified minimal subtraction (MS) scheme, which is

known to give reasonable coe%cients in low orders. As
f'ar as large orders are concerned, the use of aQ+o(Q) is

tacitly assumed to be unique.
In this Letter we will demonstrate that an alternative

choice of normalization point can improve crucially the
accuracy of the perturbative expansions and allows, in

particular, the effective suppression of the Q uncer-
tainty in the QCD case mentioned above.

Although our main concern is QCD, we shall concen-
trate here mostly on the simpler but similar case of QED.
In QED it is convenient to rescale the coupling,
a(u) =tt(u)N, and represent I1(Q ) as a sum:

fI(Q, u a(u) N.) = Z. I1,(Qz, u, a(u)) l

p= —] ~p

Each fermion loop brings a factor of W and thus H„ is

contributed by all graphs with 2 xnumber of vertices
—number of fermion loops =p. We will consider the per-
turbative expansion of Hp,

I1,(Q', u', a(u)) = g I1,'"'(Q', u'-)a(u)" +,
n=p

which is given by the graphs with a string of n vacuum
bubbles inserted as in Fig. l and the counterterms to
make these graphs finite. It is precisely these graphs
which yield the leading factorial-like divergence of the
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Moreover, the constant C is introduced through the re-

normalization of the one-loop vacuum polarization,

fI bubbles

FIG. 1. Renormalon-type diagrams that contribute to Ho" .

2 2

tt(g', p', a(p)) = b—iia(p) ln +C +g
p )

(3)

series in large orders [5,8].
The simplicity of QED is that, owing to the Ward iden-

tity, to leading order a scheme and scale invariant
eA'ective charge can be defined in QED in terms of a sin-

gle constant C [9]:

1 1 g—bo ln 2+C +0 a
a ir(g) a (p ) p

'

In the MS scheme, e.g. , C= —3. Defining the scale in-
variant A in a particular scheme as the pole of the cou-
pling

a(p) = 2, , p «A',1

bpln A2/p'

we conclude from (2) that A e ~ is also an RS invariant
[IO].

The Borel transform of Imnii can be calculated explic-
itly with the result

2 Q oo P Qo 2

Imnii, a(p) = dte ' ' " a[1m Ho], t = dtexp —t bo ln —+C D(bot)sin(zbot), (4)
a(p) ' p'

where D(u) is a quite complicated function whose precise
form is not important for the present purpose [11]. The
only piece of information we shall need is that D(u)
indeed exhibits the expected renormalon singularities at
integer u.

The exponent in (4) is naturally expressed in terms of
the effective charge (2). The Borel sum is thus RS and

normalization point invariant, but we emphasize that this
is a purely formal statement, since the integral does not

exist due to the poles of D on the positive axis [12]. But
note that even if the Borel sum of Ho is ill defined, the
representation (4) may still be viewed as a concise form

of the original series in a(p), which is recovered by ex-

panding the Borel transform in t and integrating term by
term. This yields

„a[no)p' dt" p2 0

To calculate the derivatives for large n, we appeal to Dar-
boux' theorem (see, e.g. , [13]), which states that high-
order derivatives are determined by the singularities of
the function under consideration closest to the origin.
We discuss here two cases separately: (i) Infrared (IR)
renormalon so that D(u) has a simple pole at u = —2.
(ii) Ultraviolet (UV) renormalon so that D(u) has a sim-

ple pole at u =+1 [14].
(i) We thus suppose that near u = —2, D(bat)-A/(2

+hot), A being some constant. Inserting this into (4)
(without the sin factor) gives the series

' n

2
2

P —c
42

exp —2 ln +C exp
p

(5)

Ho 2,a(p) = g ( —1)"— exp„—2 ln
2

+C n!a(p)"+'
p n 0 2 2 p

to be trusted for large n and exp„(x)=pk=ox"/k! Since we. are interested in large n, we may replace exp„(x) by
exp(x) Moreover, in the case of sign-alternating series the best accuracy of approximation of the true result through an
asymptotic expansion is estimated by the term least in absolute magnitude []3]. fhus we get

i/2 )/2 r

za(p) Q'
Iboa(p) I IboI A2 —c

with n;„—2/Ibola(p).
Recalling that A e is RS invariant, WHO can be made arbitrarily small for any Q by choosing either small p or a

scheme with large C. Thus upon the change of the expansion parameter in sign-alternating asymptotic series one can
improve the accuracy of the perturbative expansion. It might also be worth emphasizing that our results are valid
without assuming Borel summability but performing all transformations with a finite number of terms in the series.

The lesson to be learned is that a(Q) need not be the best choice of expansion parameter from the perspective
of large-order perturbation theory. In particular, by proper choice of scheme and normalization point, the ulti-
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mate divergence of perturbation series will be entirely due
to the first singularity on the positive axis; see (ii) below.

(ii) Now, near bpr =I, D(bpr) —A /(I bpi), produc-
ing a single-sign series. The minimal term of the pertur-
bative expansion of Ho, derived from this as above, is es-
timated as

r ]/7

(p) — 2 (u) Q
b ~2 —('

We see that in this case BHO is essentially RS and scale
independent apart from the slowly varying factor da(p).
Moreover, now there is no general relation between the
minimal coeScient and the best accuracy of approxima-
tion of the true value as for sign-alternating series. Thus
it is much more appropriate to use the ambiguity in the
definition of the Borel integral, given by the residue of the
pole,

A' Q
I esb I

——]
=

2 —C~Owe
as limiting the precision of perturbation theory. This
term is scheme and scale invariant.

Thus, the ambiguities of the perturbative series associ-
ated with poles of the Borel transform on the positive axis
cannot be decreased by choice of scheme or normalization
point.

We now turn to the phenomenologically much more in-

teresting case of QCD. Note however, that, at least as
the bo dependence of renormalons is concerned, QCD is

very much like QED. This is illustrated by the fact that
in QCD the renormalon singularities of B[fl] still fall at
n/bo, n = I, + 2, . . . [5], although the class of diagrams
which contributes to this result is not exhausted by the

graphs of Fig. I and bo is no longer the coeScient of the
one-loop gluon vacuum polarization as in (3). Also, the
exponent in the Borel representation (4) is always organ-
ized such as to absorb the Q dependence into the inverse

running coupling. This can easily be verified by exploit-
ing the renormalization-group equation for the Borel
transform. Therefore, the conclusions drawn from the
previous section carry over to QCD, at least as far as
variation of the normalization point is concerned (C, of
course, no longer has the simple meaning as in QED).
The only thing we should do is to substitute for bo its
value in QCD. But since now bo is negative, the roles of
infrared and ultraviolet renormalon singularities become
interchanged. The latter are Borel summable, whereas
the former are not.

This has interesting consequences for the following
reason: in QCD the first UV renormalon occurs at
—I/~bu~, which is closer to the origin of the Borel plane
than the first IR renormalon at 2/~bo~. Thus, the onset of
divergence of the perturbative series in terms of a, (Q) is
due to the UV renormalon and shows sign alternation. If,
however, we follow the above considerations, then by
choosing a proper normalization point the divergence of
the series can be delayed to IR singularities. Note that in

the QCD case we would have to take large p, p »Q,
since now the analog to (5) reads

]/7 r i 7

Q ( )
2 (~) A Q

Q-', p-',
(scheme dependence has been absorbed into A). In par-
ticular, the minimal term of the series can be decreased in

this way and the accuracy of perturbative predictions im-
proved, until one runs into the first IR singularity, which
produces a Q ambiguity.

The authors are thankful to Andrei Kataev and Arka-
dy Vainshtein for useful discussions.
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