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Renormalization-Group Trajectories from Resonance Factorized S Matrices
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%'e propose and investigate a large class of models possessing resonance factorized S matrices. The
associated Casimir energy describes a rich pattern of renormalization-group trajectories related to flows

in the coset models based on the simply laced Lie algebras. From a simple resonance S matrix satisfying
the "p3 property

' ~e predict new flows in nonunitary minimal models.

PACS numbers: 05.50.+q, 64.60.Cn, 75.10.Hk, 75.10.3m

Recently Al Zamolodchikov introduced the "staircase
model" [1], which is defined by an S matrix of a single

massive particle I with amplitude S(8,80) =[sinh(8)
—i cosh(80)]/[sinh(8)+i cosh(80)]. The important
char- acteristic of this S matrix is that it possesses two

resonance poles at 8= —itr/2~80. The ultraviolet be-

havior is governed by a theory of central charge c = l. At
intermediate distances, however, this model exhibits a
rather rich pattern of renormalization-group (RG) trajec-
tories for variation of the real parameter 80. For Hp large
enough, Zamolodchikov [I] has found that the associated

Casimir energy (defined in a torus of radius R) interpo-
lates between the central charges cz =1 —6/p(p+1),
p=3, 4, . . . , of the minimal models M~. Roughly, the
Casimir energy Eo(R, HO) forms plateaus of approximate
length Hp/2 in each value of c~ before smoothly crossing
over to the next lower fixed point c~ t. In the literature
the flow M~ Mz —t is also known [2,3] as the efl'ect of
the p~ 3 perturbation to the critical point Mz.

It is important to stress that the universal properties of
the critical point are highly dependent of the RG scenario
in the vicinity of the criticality. Therefore, it seems
relevant to extend the staircase model in order to include
a more general class of flows. Also, pursuing this ap-
proach we may as well end up discovering new crossover
behavior. This is precisely the purpose of this Letter.
We start by proposing a resonance Z(N)-factorizable
scattering theory in which the behavior of its associated

RG trajectories will be related to a certain deformation of
the minimal W(Atv t) conformal models. It turns out
that this theory is related to the scattering of the Atv

Toda model [4] for complex values of its coupling con-
stant. This relation allows us to easily conjecture the res-
onance scattering of the D and E Lie algebras. This last
relation is only formal, due to the fact that the Toda La-
grangian needs an extra meaning for complex values of
its coupling constant. However, the associated scattering
theory is perfectly well defined, producing typical RG tra-
jectories of flows in the deformed coset models based on

simply laced Lie groups. As a by-product of our generali-
zation we predict new flows in nonunitary minimal mod-
els from the simplest resonance scattering theories satis-
fying the "p property".

We first start by describing the resonance Z(N)
scattering. The spectrum consists of a set of particles
and antiparticles with masses I;=sin(itr/N)/sin(tr/N),
i =1,2, . . . , N —

1 [5]. The antiparticle appears in the
particle-particle amplitude, and the factorizability implies
[6] that the only constraints are the crossing and the uni-

tarity conditions,

S;,J (8)St,j ( —8) =1, S;,I(8) =SN J,; (t'tt 8), —

~here N —j is the antiparticle of the j particle.
There is a family of solutions of Eq. (1) as a function

of a real parameter 80, which is responsible for the reso-
nance poles. The minimal solution reads

sinh —,
' (8+i2tr/N) sinh —,

' (8—80 itr/N) sinh —,
' (8—+80 itr/N)—

S, , (8,8,) =
sinh —,

' (8—i 2tr/N) sinh —,
' (8 —80+itr/N) sinh —,

' (8+ 80+i tr/N)
(2)

The physical pole is at H=i2tr/N, while the resonance
poles appear in the unphysical sheet at 8= —itr/N+ Ho.

The other amplitudes S;~ are obtained from 51 ~ by
applying the bootstrap approach at 8 = (i tr/N ) [i —j
+2(a —b)], a =1,2, . . . ,j —1, b =1,2, . . . ,i —1. For
N =2, we obtain Zamolodchikov's model [1].

Here our interest is to study this theory at intermediate
distances, by analyzing the finite-volume effects to the
Casimir energy. An effective way to study the Casimir
energy E(R, HO) in a geometry of finite volume R is via
the thermodynamic Bethe ansatz (TBA) approach [7,8]

mE(R,80) = —— d8cosh (8)L (e), (3)

where L(e) =ln(1+e ' ), m is the mass of the particle
and its antiparticle, and the pseudoenergy e(8) satisfies
the following integral equation:

t
at temperature T =1/R. For the sake of simplicity let us

first concentrate on the case N=3. In this case the
Casimir energy E(R, HO) is given by
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f+ OO

e(0)+ dH'y(0 —0', Ho)L(c) =mR cosh(0), (4)
2z "

where y(0, 0o) = —f(d/dH)1n[S~ ~(0, 0o)S~ ~(irr 0—, 0o)].
The ultraviolet limit of the Casimir energy, R 0, is

independent of Ho and we find the behavior E(R, Ho)
= —2x/6R, which implies that the background confor-
mal theory has central charge c =2 [9]. In order to ana-
lyze the behavior of the function c (R, Ho) = —6R
&& E(R, Ho)/rr for finite values of R we numerically solved

Eq. (2), in the convenient variable %=In(mR/2), by
standard interactive procedure. For Ho =0, c(R,O)

behaves as a smooth function between the ultraviolet
(c=2) and the infrared (c=0) regimes. By increasing

00, however, we observe that certain plateaus start to
form precisely around the values that parametrize the
central charge of the minimal model of the W(A2) alge-
bra, namely, c =2[1 —12/p(p+ I )],p =4, 5, . . . . For ex-

ample at 00=40, we notice at least 8 plateaus starting at

p =12 and subsequently visiting the other fixed points
p=l 1, . . . , 4, until finally reaching the infrared region.
In Figs. 1(a) and 1(b) we show this behavior for
00=20,40. The same pattern can be viewed from the
beta function along the RG trajectories. Following
Zamolodchikov's notation [I], one can define the beta
function as

P(g) = —„c(R,H, ), g=2 c(R, H, ).—d

In Figs. 2(a) and 2(b), we show P(g) for Ho=20, 40. The
zeros of Ig(g) are formed precisely at g=24/p(p+I),
p =4, 5, . . . , in accordance with the plateaus mentioned
above.

In the case of general A we should expect a similar be-
havior. From Zamolodchikov's discussion of N =2 and
our present results we conclude that each time thatI= —(p —N)Ho/2 the function c(R, Ho) will cross over
its value of cz =(N —I) [I —N(N+ I)/p(p+ I)], p =N
+1,N+2, . . . , to the next fixed point with central
charge cz+], Indeed, by linearizing the TBA equations
around X= —(p N)0—o/2 one remains with the same
equation that describes the flow in the 8'(Ajv-~ ) minimal
models perturbed by the least Z(N)-invariant operator
[10]. However, we stress that the bulk of each plateau
has the approximate length of Ho/N, in agreement with

the fact that the finite-size corrections are N dependent.
As an important remark we mention that our proposed

resonance Z(N)-factorized model is easily connected to
the one of the Ajv —

~ Toda field theory [4], by making an

analytical continuation to the complex values of the Toda
coupling constant. The coupling constant e enters in the
S matrices through a function bT~, (a) [4]. By setting

bT~ ,(a) =r.r/N+ iHn in Eq. (2), we recover the minimal
S matrix of the A~ ~

Toda model [41. This leads us to
conjecture that the resonance scattering theories, based
on the simple laced Lie algebras A, D, E can be obtained
from the corresponding Toda S matrices [11]. The reso-
nance parameter Ho is introduced through the simple rela-

. 15

1.5
.05

0
—80 —60 —40

X
—20

,08

.06
I I I

)

I I I I

]

I I I I

.04

.02

—150
I I I I I I I

—100
I I I I

—50

FIG. 1. The scaling function c(R,Op) for (a) Op=20 and (b)
Op =40.

g

FIG. 2. The beta function P(g) for (a) Ho =20 and (b)
op=40. For Op=40 we have omitted the first zero at p =5 in

order to better show the remaining zeros of P(g).
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tion bioa, (a) =}r/h ~iHo, where h is the dual Coxeter
number of the respective A, D, F. Lie algebra. Using this
last relation it is possible to express the two-body reso-
nance S matrices S, b(8, 8o) by the equation

Sa,b(H, Ho) =exp —,y. b(k, Ho) dk
i sin(Hk) (6)

where (I(, b(k, Ho) satisfy the remarkable matrix identity

}Iong b(k, Hp) I}, b cosh(hark/h ) —I, b/2
~a,~—

2}r cosh(}rk/h ) —cos(kHo)

and I, b is the incident matrix of the respective A, D, E
Lie algebra.

We have also analyzed the TBA equations obtained
from Eqs. (6) and (7) around X= —(p —h)Ho/2 and

performed numerical checks. Our conclusion is that the
A, D,E resonance scattering proposed in Eqs. (6) and (7)
will produce RG trajectories associated with the flows in

the coset model G~ bSG}/G-r b+} (G =A, D,E) [121
perturbed by the field 4 with conformal dimension 6+
=1 —h/(p+1) [10]. The scaling corrections in the in-

frared regime are made by the "dual" operator @ with

conformal dimension A~= 1+h/(p —1) (for p =h+1,

FIG. 3. The flow pattern in the nonunitary minimal models

Mq/(pq+ }}, M(q+ }}y(2q+}}, q
=2, 3, . . . . The horizontal (vertical)

arrows represent the relevant (irrelevant) operators defining the

ultraviolet (infrared) corrections to the fixed point.

this field is replaced by the spinless combination TT of
the stress energy tensor T). The field @ (4) is the ana-

log of the operators (b} 3 ((bs })of the minimal models. It
has been argued [131 that the combination )(,p} 3+A/3
plays a fundamental role in the description of Zamo-
lodchikov's staircase model as a perturbed conformal field

theory. In our case, the straightforward generalization
will consider the combination k4+k4. We remark, how-

ever, that this picture has to be checked by a careful
analysis of the finite-size corrections to the fixed point

[14].
Let us now introduce a resonance scattering model pos-

sessing the (b property that will be connected with new

flows in nonunitary minimal models with e &1. The
model consists of a single particle a, and its two-body S
matrix is given by

S..(8,8.) = tanh 2 (8+i2rr/3) tanh 2 (8—
Ho

—i}r/3)

tanh —,
' (8 —i 2n/3) tanh 2 (8 —Ho+i'/3)

tanh 2 (8+8o —iz/3)

tanh 2 (8+Ho+in/3)

The pole at H=i2z/3 produces the particle itself ((b

property) and the resonance poles are located at Ho

=irr/3+ 8(}. It turns out that the amplitude S, , (8,8o)
satisfies the relation S, ,(8, 8o) =S}}(8,8o)S}2(8, 8o),
where S; ~ (8,8o) are the S matrices of the resonance
Z(3) model. The equivalent Toda theory [4] is the one
proposed by Mikhailov [15] as a particular reduction of
the Z(3) Toda model. From the TBA point of view, this
implies that the Casimir energy associated to S, ,(8, 8o)
is precisely half of that of the Z(3) model. Hence, now

the plateaus will be formed around the values c~ =1
—12/p(p+1), p =4,5, . . . . This result suggests that we

are dealing with RG trajectories of the nonunitary
minimal models. We recall that in this case the Casimir
energy is identified with the efl'ective central charge
c ff

= ( —248 +c), where 5 is the lowest conformal di-
mension [16]. Indeed, this is satisfied by the following
classes of nonunitary minimal models:

Mq/(2q+]), M(q+ [)/(2q+]), q =p —2 =2, 3, . . . .

The flow pattern is shown in Fig. 3. We see that while
in the Mq}(2q+}}model the relevant (irrelevant) operator
associated with the perturbation (infrared corrections) is

(}}(s ((}}2}),in the M(q+}p(2q+(} theory the situation is re-
placed by (b2 } ((b} s). In the RG trajectories the fields (b} z

and (}}z } interchange their roles of relevant and irrelevant
operators, building an extremely interesting pattern of

flow. For an extra support we also have numerically
studied the spectrum of the simplest case, namely

Mys+(b2 } MzIs. Our results are compatible with the
typical behavior expected of the RG flows. A conse-
quence of this new crossover behavior is to impose con-
straints in the physical content of the related nonunitary
minimal models. For example, it is possible to show [14]
that the flow M3Is+(b2 } M2~s is compatible with a 4
Ginzburg-Landau action to the M3/5 theory. Also, in the
case of Mys, the field (b( s (not present on its Kac table)
is substituted by the level-2 descendent of the (b} 3 opera-
tor.

In summary we have discussed rich classes of renor-
malization-group trajectories obtained from resonance
scattering models based on the A, D,E Lie algebras. New
flows in nonunitary minimal models have also been pre-
dicted. In our discussions the main bulk of technical de-
tails were omitted, and they will be presented in a forth-
coming publication [14].
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