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Slowing of Decay Processes by Interactions with a Medium
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A particle that decays by the simplest interaction into two other particles is placed in a space-periodic
external potential that acts only on the initial particle. For a strong potential, the decay rate is slowed

drastically under most initial conditions. Comparing to the second-order perturbation treatment of a
model where the decaying particle is imbedded in a medium of heavy, uncorrelated particles, nonin-

teracting except for a potential interaction with the decaying particle, we find similar rate modifications.
There exist possible applications in the supernova and early Universe environment, as well as possible
laboratory demonstrations of the effect, which bears some relationship to the "quantum Zeno" effect.

PACS numbers: 03.65.6e

In dense environments, such as neutron star matter, the
supernova core, or the early Universe, the rates of com-
paratively weak reaction processes are sometimes impor-
tant in determining departures from equilibrium, trans-
port properties, or the rates of production of neutrinos or
exotic light particles. The rates needed for the estimation
of these properties are usually estimated from the low-
est-order calculation involving the minimum number of
particles. These rates can be greatly affected by other in-

teractions with the dense environment [1,2].
In a more general context, the effects of interactions

with the environment on particle decay have been the
subject of a considerable literature directed toward the
questions of whether actual decay rates should be perfect-
ly exponential at long times [3,4], and whether there are
systematic changes in rates, due to phase disruptions or
measurement of the wave function of the decaying parti-
cle [5-10]. Much of this discussion has been based on an
assumption of multiple collapses of a wave function as the
decaying particle interacts with a medium. In recent
works that find potential rate reductions from this pic-
ture, the eff'ect is called the "quantum Zeno eA'ect. " Oth-
er recent formulations that do not invoke multiple col-
lapses find related results in particular cases [11—14].
The present work is of the latter category; it examines an
idealized model in which the medium induces a slowing
of decay processes, one that is not due to wave-function
collapse. The physics is apparently related to that of
many, but not all, of the above references.

We consider an initial state consisting of a particle that
both interacts strongly, and frequently, with its environ-
ment and can decay via a prescribed weak interaction
into some other particles that (for simplicity) are taken
not to interact with the environment. Ideally, we might
consider the problem in which the particle propagates
through a space populated with randomly situated
scatterers; but we here consider instead a distinctly non-
random potential V(z) in 3D space, periodic in the vari-
able z with period 2L.

We take the case of a Klein-Gordon particle, and take
the potential to be a Lorentz scalar. The case of a
Schrodinger particle can be recaptured by taking the non-
relativistic limit of the results. We consider an initial
state that is an eigenstate of the strong Hamiltonian with

energy E, with a wave function that is independent of
x,y. The wave functions are of the form

n

~(z)= g a„e'"',
n

—g(pq) (a)@(b) (2)

where g„=k+ntt/L and k(E) is found by solving the
time-independent Klein-Gordon (or Schrodinger) prob-
lem within a single cell.

Now we add an interaction leading to the decay of the
initial state, described by the scalar field N to particles
(a) and (b),
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To calculate the decay rate to second order in the weak-coupling decay constant X we envision using a standard second-
quantized representation of the field of the decaying particle, @, in the presence of the potential, taking the energy
eigenstates as a basis. Using (1) for the initial state wave function and normalizing such that +la„l =1, we obtain

(3)

where

$2(32~2E ) ( d 3q (a) d ) (b) [ (a) (b)] —( ~(~ ( ) (b) )~(2)( (a) . (b) )~(E (a) (b) )

=rr„,(E (E 2 —(2) 'i2) g[E —t" —(p +p ) ] (4)

Here p, and pb are the respective masses of the two decay products. The last line in (4) identifies I „as the decay rate
that would be obtained for a free particle of energy E, with the coupling (2), if that free particle had mass
W=(E —( )' '

I r„,(E,W) = (16') 'l E ' 1—
~2

[i2
(Pa Pb )

(5)

First we consider a decay into two massless particles,

p, =pb =0. In this case, the function I r„, of (5) does not

depend on the variable W, and therefore the function I „
of (3) depends on n only through the multiplying 0 func-
tion from (4). Using the normalization of the coeffi-

cients, a„, we obtain

g ~oo

r=(16«) '&' Z Ia. l'&[E' —g']
p ~ —oo

g ~oo

=r„„,(E) (16«) —'&' Z Ia. I'&[(.' —E']

We see that in this case, for any potential, the eA'ect of
the medium is to reduce the rate of decay below the free
rate, evaluated at the same energy E. We cannot expect
the medium corrections to be negative under all the
kinematical conditions that will occur when the decay
products are massive. For example, there are cases in

which the free-space decay is kinematically not allowed,

but in which the inhomogeneity of the medium induces

decay, as in, e.g. , the process y e++e in matter,
where the Coulomb fields of nuclei supply the necessary
momentum. However, the result (6) is indicative of a

!
tendency toward reduction of rates, one that becomes
universal in a limit considered below.

To discuss the case in which the decay products have

mass, and to make quantitative estimates of the domains
in which the effect can be significant, we need to consider
a specific potential. We choose

Vo for 2nL & z & (2n+1)L, n =0, + 1, + 2. . .
Vz

0, otherwise .

(7)

We define momenta in the two regions, p( = [E
—M ] 'i, pz = [E2 —M —Vo] 'i, where m is the mass of
the initial particle. We consider an initial state that de-
pends only on z, with flux in the +z direction, and spe-
cialize to the case pz=2jrr/L, where j is a nonzero in-

teger; the results will be essentially the same as the gen-
eral case and the algebra considerably simpler. In this
case there is a stationary solution for the initial wave

function, for any value of pi, in which the motion, in the
V=O regions, is in the +z direction only, and where the
wave number is given as k =p(/2. The wave function is

given in the region —L & z & L by

e ' for —L (z (O,
(z) ='

, (2p2) ' [(p) +p2)e' "+(p2 —p()e ' "] for 0 & z & L .

1

p(

2
C. +p(

s&n
(2 p2

The squares of the coefficients, a„ in (1), are

(9)

t

Using (9) and (10), it is easy to show that in the limit of
infinite L the sum (3) now gives a modified decay rate
I g=

where („=p(/2+nor/L We speci. alize to the case of the
decay of a particle of mass M into a massless particle
plus a particle of mass (M —Q) where Q«M, taking
completely nonrelativistic conditions for the initial parti-
cle. Neglecting the Q term, the free rate (5) becomes

r ...(E,(E' g') '")=4 ),'M '—[p'+2MQ q']--
(10)

I = =C I r„,(E(E —p ) ' )

+C,rf (E, (E —p2) ),
where C~ 2 are the respective probabilities that the initial
particle is in the left- (p) ) or right-hand half (p2) of the
elementary cell, or its periodic repetitions, when the wave

function is given by (7). It is clear that from (11) that
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TABLE I. Values of the suppression factor I /I for various
values of energy release Q and free momentum pi. The
momentum in the cells where the potential acts, p2, is fixed at2', implicitly defining the potential, which is attractive for
the case of the third column. In the last column the result
r(rev) is given for the same set of parameters, but reversed, in

the sense that p2 is the free momentum, and p] is the momen-
tum in the presence of the potential, redefining both the energy
and the potential, which is now repulsive.

p)L/tt

0.5
0.5
0.5
0.5
1.0
1.0
1.0
1.0
1.5
1.5
1 ' 5
1.5
1.95
1.95
1.95
1.95

0.5
1.0
2.0

10.0
0.5
1.0
2.0
5.0
0.5
1.0
2.0
4.0
0. 1

0.2
0.5
1.0

0.254
0.602
1.05
1.00
1.15
0.50
1.03
1.00
0.68
0.55
1.00
1.00
0.28
0.07
1.00
1.00

r(rev)/I

0.436
0.402
0.346
0.984
0.338
0.295
0.235
0.995
0.152
0.114
0.995
1.00
0.30
0.08
1.00
1.00

the effects of the potential are purely kinematic in the
limit of large L.

We address the case of small L by direct evaluation of
the sum, (3), using the a„of (9) and the free rate (10).
We compare the calculated rates to I t, = in order to
separate the effects of altered momentum, in the p2 re-

gion, from the specific eA'ects of L. Results for I/rt. =
for various values of p~, p2, and Q are shown in the third
column in Table I. The last column of Table I gives the
result of the very same calculation, except in a "reversed"
case in which p~ and p2 are interchanged in Eq. (8); for
given pl 2 the values of E and V are different from in the
previous case, and p~ is replaced by p2 in (10). If we

consider the V=O regions to be free space, then all the
entries in the third column reflect the effects of passage
through an array of attractive wells, and the entries in the
last column refiect the eA'ects of passage through an array
of repulsive barriers.

We note that, depending sensitively on the choice of
parameters, the results range from major reduction to no
eA'ect or a slight increase, confirming our intuition from
the massless case that the general trend will be negative.
The most important parameter is Q; for sufficiently small
values of (MQ) 't L the suppression is great in almost all

cases. However, for there to be a significant effect there
must be some minimum strength of potential; that is to
say, (p2 —pl )L ) (some small number dependent on Q).

Our conclusion is that there is a fairly consistent
suppression of the decay rate, for small values of L, due

to the interactions with the medium. The results are, we

believe, closely related to the rate reductions found in

Refs. [5-14]. These Zeno effects have usually been de-
scribed in terms of time-dependent interruptions, by mea-
surement, of the evolution of the wave function of an un-

stable system; we have formulated a problem in space,
but with similar elements. We note, however, that in the
present treatment there are no repeated collapses of a
wave function [15]. There are some recent papers that
bear on the possibilities of a Zeno effect without wave-
function collapse [16].

In the example based on (9) and (10), giving the num-

bers in Table I, we see roughly the same criterion govern-
ing the size of the eA'ect that is stated in Ref. [2]; the
combination pL = 1 and (MQ) '/ = 1 that we need for a
big eA'ect leads to QT = 1, where T is taken as the transit
time across the cell. The same criterion has been cited in

describing the Zeno effect, where T now is taken as the
time between measurements [7]. Our description can
lead to sharper results, e.g. , the minimum strength re-
quirement cited above.

The physical limitations on the applicability of the re-
sults to any physical problem are limited by a qualitative
consideration: It is very hard to contrive an example in

which the texture of a real medium is fine enough to
affect a weak decay process; momentum releases are of
order MeV/c at the least, inverse atomic spacings of order
keV/e. [We do not consider here possible eA'ects on
atomic radiative rates due to electrical interactions with
surrounding atoms, which are considered in much of the
Zeno literature. Here the Q values will be much less,
making the effect possibly much more promising; on the
other hand, the effects on the internal structure of the ini-
tial atom, which are not simulated in our zero-range de-
cay interaction (2) must come into play. ] The neutron
star or supernova core environments do supply spacings of
scatterers that are of the order of, or smaller than, the in-

verse momenta of particles participating in reactions that
are important to the physics.

It is interesting to see whether or not the use of the po-
tential model can give any guide to the effects of a medi-
um of uncorrelated individual scatterers, say a Boltzmann
gas. To pursue this question, we compare perturbation
expansions for the two cases. Let us consider the way
that perturbation theory works with the potential (7),
taking the example of decay into massless particles for
simplicity. We ask how it can be that the second-order
result gives a result of the form of (6), in which the only
contributing terms to the correction to the zero-order re-
sult come in a limited kinematical region, namely, from n

outside the domain defined by g„(E.
The answer is the following: The second-order terms

come about in two ways, the first of which is through a
medium-dependent wave-function renormalization con-
stant Z2 & 1, coming from the graph in which the poten-
tial acts twice on the incoming line, giving no resultant
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momentum transfer to the medium. Multiplying the free
rate by Z2 and expanding Z2 to second order in V gives a
negative correction to the rate, in the form of a sum over
momenta, („. The other terms are those in which we cal-
culate a first-order amplitude for transferring some
momentum to the medium, square, and then sum over the
momenta. These terms cancel the Z2 terms exactly
within the domain defined by g„(E, leaving only the
piece of the Z2 correction from the terms outside of this

domain.
We turn briefly from the fixed-background-potential

model to the case of scattering ofI' a Boltzmann gas of
nonrelativistic heavy particles, with density n~ and mass
M))m, where m is the mass of the decaying particle.
The gas particles do not interact with each other, or with

the decay products, but they interact individually with

the decaying particle through a potential V. To second
order in V, we find

r —r,„„=—) '(64m E) 'num'

d qd k~ V(k)
~X

ro'(q) [(p+ k) ' —p'] '
8(E —co'(q) —co'(p —q) ) 8(E —co'(q) —co'(p+ k —q) )

co'(p —q) co'(p+ k —q)
(12)

In deriving (12) we have taken I sufficiently large so
that the energy diA'erences of the decay products (a) and
(b) are large compared to the energy diA'erences of the
bath particles. The first term under the integral is the
(negative) Z2 contribution; the second is the (positive)
contribution in which a background particle is scattered
to a new state. Again, there is a large cancellation, with

a negative remainder. The structure of (12) is interesting
in another respect: If we had neglected the Zz correction,
the second-order calculation would have given a divergent
integral, because of the singularity at (p+k) =p . An

attempted fix of this pathology by putting in a finite

imaginary part of the propagator would be incorrect
many-body physics. We believe that the estimation of
eA'ects of a medium on reaction rates, such as the axion
and neutrino rates treated in Ref. [2], should (a) take
into account processes on the external lines, including the
medium-dependent Zq factor, as well as efkcts on inter-
nal lines; and (b) avoid the introduction of ad hoc imagi-
nary parts in propagators, letting the formalism provide
the needed sums of graphs in the needed places.

We have framed our examples as effects on decay
rates, but it is clear that the same kind of analysis can be

applied to reaction cross sections in the medium. The
effect should be to reduce cross sections, for sufficiently
small L and strong potentials, under the majority of
kinematical circumstances.
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