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Glueball Wave Functions in Lattice Gauge Calculations
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The SU(2) glueball wave functions (O~A„(x)A~(y) ~G) are measured on the lattice in the Coulomb
gauge, using a source method. It is found that the tensor glueball is about 4 times as large as the
scalar giueball. Phenomenological implications for identifying glueballs are discussed.
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Notwithstanding the fact that quantum chromody-
namics (@CD) has been by and large established as the
leading fundamental theory of strong interaction, clinch-
ing experimental evidence is still needed to prove it be-
yond doubt. If experiments could confirm the existence
of glueballs, which appears to be a crucial prediction of
the theory, then /CD would be on much firmer ground.
The prediction of these glueball masses has long been
attempted in lattice gauge Monte Carlo calculations [1]
which show that the lowest scalar, tensor, and pseu-
doscalar glueballs lie in the mass region of 1—2.5 GeV.

There are several glueball candidates from J/g radia-
tive decays and hadronic reactions. The best candidate
is perhaps the tensor meson e(1720) [fz(1720)] discov-
ered in J/g radiative decays with decay modes of rlrl [2],
KK [3], and urn [3]. Phenomenological analysis suggests
that the flavor independence and suppression of periph-
eral production of 8 can be understood in terms of a soft
form factor [4].

The need for a soft form factor, at first glance, appears
unjustifiable. It is well known that point couplings are
sufficient to describe the Okubo-Zweig-Iizuka (OZI) al-
lowed qq meson decays in the SU(3) multiplet [5], e.g. ,

p ~ orner, P ~ KK, fz ~ 7rvr, and fz -+ KK. This is the
basis of the hadronic models [6] where the sizes of the qq
mesons are small (0.3—0.4 fm) and their electromagnetic
form factors are explained by incorporating the vector
dominance coupling to the qq core. This picture of the
qq mesons seems to be consistent with the lattice gauge
Mont;e Carlo calculation of the electric form factor of the
pion [7] and the measurement of the qq wave function of
the pion in the Coulomb gauge [8].

On the other hand, there are indications that the ten-
sor glueball is likely to be much larger than the qq mesons
as far as the strong decay is concerned. As the tensor-
to-scalar-glueball mass ratios Tz/Ai and E/Ai [Tz and
E are the two irreducible representations of the cubic

t

group which combine to form the tensor (J = 2) glue-

ball in the continuum; Ai is the scalar representation of
the cubic group] are plotted [9] against the scale param-
eter z = M~, L, where L is the size of the spatial vol-

ume, they reveal the following results: Tz/Ai and E/Ai
differ considerably for small and intermediate volumes

(2 ( z ( 10), and start to join only at large z (z & 10),
apparently restoring rotational invariance in these large
volumes (L & 1.6 fm). This reflects the large finite-size
effect for the tensor glueball, whereas no such effect is

observed for the scalar glueball.
We think that a straightforward way of demonstrating

the glueball size is to calculate the glueball wave function

(O~A„(x)A„(y)~G), much the same way as the qq wave

function was measured in the Coulomb gauge [8]. In this
Letter, we report on a calculation of the scalar and tensor
SU(2) glueball wave functions in the Coulomb gauge.

The gauge-fixing approach can also serve as an inter-
mediate step toward extracting gauge-independent auan-
tities (e.g. , mass, charge radius, form factor) with certain
numerical advantages (see below and Ref. [10]). The is-

sue of Gribov copies on the lattice, which has drawn quite
a bit of attention lately [11,12], is not addressed here. We

postpone the study of the impact of such copies on our
results.

A sample of SU(2) configurations was generated by
the Monte Carlo method, using the usual Wilson ac-
tion without gauge-fixing terms, but with a static source

(U, = U„= 1) [13] at Euclidean time t = 0. The gauge
was then fixed by overrelaxation [14].

The Bethe-Salpeter wave function of a glueball in the
continuum can be represented as

(0~ ) a(p, &) ) &i~(r)A~(x)A~(x+ ")IG)

where the two sums enforce the appropriate symmetries
of the polarizations and orbital angular momentum, re-

spectively As a la. ttice version of the 2-glue operator

A„(x)A„(x+ r), we choose

&~ (r, t)—:) (ReTr[U„(x, t)U (x+ r, ]
—~(ReTr[U&(x, t)])(ReTr[U (x, t)])) (2)

2=a ) At(x)A„(x+re{1 —sia [At (x)+Az(x+rg]+0(a4)),

where (. . ) denotes a Monte Carlo average. The summation runs over all sites of a given time slice in order to project
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onto a 0-momentum state. The second term is needed to
subtract out contact terms like a2A2 (2:), and to enforce
lim„- C„(r, t) = 0.

The a dependence of our glueball operator is made
possible by gauge fixing. It is to be contrasted with
the a dependence of the gauge-invariant Wilson loops
previously used in glueball studies. This lower dimen-
sion operator yields a linear a dependence in the correla-
tion function as opposed to the as dependence for Wilson
loops. This considerably improves the glueball signal as
u is reduced [9, 15].

One pays a price here: our 2-link observable sums
over many paths connecting the two links; some paths
wind around the lattice and others do not. Therefore we
risk a mixing of our glueball states with the Aux states
[16] (sometimes referred to as torelons in the literature).
However, we believe that the mixing is minimized by the
subtraction in Eq. (2) in view of the fact that flux states
are the most extended objects on the lattice [15].

We now need to select the desired quantum numbers S
and L for the spin and orbital angular momentum. In this
study we only consider S = L = 0 (0+ or i So) and S = 2,
L = 0 (2+ or sS2). Furthermore we only consider the E
representation of the cubic group as a discrete version of
S = 2, leaving the T2 representation for a later study
[15]. The two lattice observables measured are therefore

W, (]r[,t) = ) ) C„„(r,t), (4)
P 7=

W2(]rg, t) = ) [2Css(r, t) —Cii(r, &) —Cqq(r", &)]. (5)
r"

In the presence of the source at t = 0, we observe a
deviation 6W of these observables from their vacuum

expectation values. For large t, the dependence of AlV
on r and t factorizes:

AW(r, t) e 'Q(r), (6)

where m, is the glueball mass and g(r) the Bethe-Salpeter
wave function. Contamination by excited states, for t

0. :&

0.'

insu%ciently large, shows up both as a deviation of AW
from a single exponential in t, and as a modification of
the spatial wave function with t. We have checked that
our results are consistent with the above factorization.

Two sets of measurements were taken to check the scal-
ing of our results at P = 2.2 and 2.431 (700 configurations
on a 124 lattice at each P, separated by 4 Metropolis up-

dates; an average of ca. 12 gauge-fixing iterations for each
time slice was sufficient). This latter P value is chosen to
be the same as that in Ref. [8] in order to allow a direct
comparison with the meson wave functions.

Our results for the wave functions are contained in

Figs. 1 and 2 and in Table I. The wave functions, nor-
malized to 1 at the origin, are shown for the scalar and
the tensor glueballs, at P = 2.2 and 2.431, 2 and 3 Eu-
clidean time units away from the source, respectively. We
observe, as was the case for mesons, an exponential de-
pendence g(r) e "~"'. The values of ro, for the two
glueball states and the two P values, are listed in Table I
with the former meson results. One can see that the lat-
tice spacing changes by a factor of 2 between P = 2.2
and P = 2.431, and that the tensor glueball is much more
extended than the scalar, by a factor of 4. The tensor
is therefore more sensitive to the finite-size efFect, which

is quite visible in the distortion of the wave function for

large r at P = 2.431.
Effective masses log[/(r = 0, t = 1)/Q(r = 0, t = 2)]

are reported in Table I. They are consistent with those
obtained with much higher statistics [16]. If one assigns
a physical value a 0.22 fm at P = 2.2, by setting the
string tension to 420 MeV, one obtains physical radii and
masses as in Table I. The tensor glueball has a radius

0.8 fm, i,e. , 2—3 times that of a pion [8].
The color charge distribution r ~Q (r)] is shown in Fig.

3, for the two glueball states at P = 2.2. One can roughly
estimate the charge radius to be 1 and 4 —5 lattice
units, or 0.2 and 0.8 fm, for the scalar and tensor
glueballs, respectively. The scalar glueball radius we ob-
tain agrees with earlier calculations from (G~O~G) where
0 is a plaquette of varying size, which yielded a radius
of 0.25 fm [17]. On the other hand, the radius ob-
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FIG. 1. The SU(2) scalar glueball wave function measured
on the lattice in Coulomb gauge at P = 2.2 and 2.431. The
normalization is arbitrary. Error bars shown are of typical
size for these data. FIG. 2. Same as Fig. 1, for the tensor glueball.
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TABLE I. Sizes and masses (with statistical errors) of SU(2) giueballs and mesons, in lattice

and physical units.

Size
P=22
P = 2.431
With a(P = 2.2) = 0.22 fm

Masses
P=22
P = 2.431
With a(P = 2.2) = 0.22 fm

0+

0.9

0.2 fm

1.33(3)
0.86(4)

1.2 GeV

~ 3.5

~ 0.8 fm

1.85(7)
1.04(23)

1.7 GeV

~ 3.2
0.32 fm

~45
0.45 fm

tained from the form factor calculation is much larger
[18]. This seems to be reminiscent of the pion situation:
The radius from the Coulomb wave function [8] is much
smaller than the charge radius determined from the form
factor [7]. The difFerence there is interpreted as due to
the vector dominance in the pion charge form factor.

For the scalar glueball, its S-wave decay to pseu-
doscalar pairs may proceed via a pointlike coupling [Fig.
4(a)]. In this case, the form factor will merely reflect the
small qq size of the pseudoscalar mesons, and we expect it
to resemble that in the ordinary OZI-allowed meson de-

cays. In other words, if the form factor is parametrized
by the form e ~ ~~, A will be in the range of 4—9 GeV
[19,20].

The form factor of the tensor glueball is a different
story. Its pointlike coupling to a pseudoscalar pair is pre-
sumably suppressed due to its D-wave decay, so that the
form factor will be dominated by the nonlocal coupling
like in Fig. 4(b) where the pseudoscalar mesons couple to
the glueball at different positions, thus reflecting the size
of the glueball. To evaluate this form factor, we employ
the following approximation. We consider that the cou-

pling between the pion and the glue field A„ in the glue-
ball proceeds via the fundamental coupling @p„"24A'„
and an OZI-allowed qq creation in the sPo channel. Since
the qq separation in the pion is small (~ 0.32 fm) from
the Coulomb wave-function calculation [8], we can treat

the pion as a point field at low energies as in the chiral
perturbation theory and approximate the vertices in Fig.
4(b) by the efFective coupling A~~)7 B„p, where p is the
pion field and ri~ is an efFective qq field in the adjoint
representation to be exchanged between the gauge fields

A„. Since all the approximation to the efFective vertex
is done locally, we have not compromised the gauge in-

variance. Then the G ~ 7r7r decay amplitude at the tree
level involves a second-order process of the effective cou-
pling and the rI propagator. As far as the momentum
transfer is concerned, the G ~ orner decay form factor is
proportional to the Fourier transform of the product of

the glueball wave function (0!A„(0)A,(r)!G), the adjoint
propagator G„(0,r) which mediates the glueball to 7r7r

decay with the t-channel exchange, and the relative D
wave between the pions, i.e. ,

Fcpp(q ) f dqrs 'q"7 (0!~A)(0)A„(r)!~G)

x G„(0,r)Y2(r), (7)

where q is the relative momentum between the pions and
the Yg is due to the D-wave decay. We believe this is a
good approximation for the q dependence which reflects
the glueball size. Since the expression in Eq. (7) is gauge
invariant to the leading order of the efFective coupling, we

may evaluate it in any gauge. Since we have calculated
the glueball wave function in the Coulomb gauge, we need
to find the adjoint propagator in the same gauge. In the
spirit of the Born-Oppenheimer approximation, we fur-
ther replace the adjoint propagator G„(0,r) by the static
potential between the sources in the adjoint representa-
tion. The latter is measured through the correlation of

- P

P

FIG. 3. The SU(2) color charge distribution in a scalar
or tensor glueball, measured on the lattice at P = 2.2. The
normalization is arbitrary.

P

FIG. 4. Dominant decay process for (a) the scalar glueball
and for (b) the tensor giueball.
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where we have used the lattice result e "o for the glueball
wave function, with ro 0.8 fm. Equation (8) gives the
following prediction for the tensor form factor FG+PP..

+Gpp 'q (1 + q ro/4) (9)

We can fit the phenomenological form q exp( —q /A ) to
Eq. (9) for the qz = 1.75, 1.98, and 2.88 GeV from
the corresponding decays of 8 to rirl, KK, and ver. The
fitted As in this qz range is 0.89 GeVs. This is very close
to A2 = 1 GeV2 which is needed to explain the fiavor-
independent decay pattern of 8 [4].

To conclude, we have calculated the SU(2) glueball
wave functions in the Coulomb gauge at P = 2.2 and
2.431 with the source method. Except for the finite-size
effect at the edge of the lattice for the tensor glueball,
the results at these two P values seem to scale. It is
learned that the tensor glueball size is about 4 times as
large as that of the scalar glueball. This is consistent with
the large finite-size effect for the tensor (E) glueball mass
found in the previous lattice calculations. It also confirms
the phenomenological speculation of a soft form factor for
the tensor glueball in order to identify 8 [f2(1720)] as a
fairly pure glueball from the available experiments.

We show, albeit in an approximate manner, how

to construct physical quantities like the form factors
from the gauge-dependent Bethe-Salpeter wave func-
tions. This opens up the possibility of calculating phys-
ical processes utilizing the hadronic structure obtained
from the lattice calculation as an intermediate input.

This work is partially supported by U.S. DOE Grant
No. DE-FG05-84ER40154 and the Alexander von Hum-

boldt Foundation of Germany. The authors would like

to acknowledge the hospitality they received at HLRZ,
Julich where part of the research was carried out.

Note added. —After this work was completed, we
learned that, a new spin-parity analysis of J/@ radia-
tive decays reports a large spin zero component in the
0(1720) region [21]. The phenomenological implication
of the present work could be modified pending better
data for the branching ratios for the spin 2 component.

two timelike Wilson lines in the Coulomb gauge. To com-
pare with the phenomenological fit of the form factor at
relatively low momentum transfers (q in the range of
1—3 GeV ), we use the long-range part of the potential
which is linear in the Coulomb gauge. As a result, Eq.
(?) becomes

dr r3j t(qr/2)e
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