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Competition between Singlet Formation and Magnetic Ordering in One-Dimensional Spin Systems
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We use mappings onto soluble models and Abelian bosonization to determine the phase diagram and
correlation functions of a model of two coupled spin chains. We find quantum disordered singlet phases
and magnetic phases and determine the phase boundaries, universality classes of transitions, and correla-
tion functions. We believe our model captures the essential physics of the interplay between the Kondo
effect and magnetic ordering, which may be important for the heavy fermion materials.
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Heavy-electron materials are a class of compounds
whose chemical formula includes a rare earth or actinide
element (typically Ce, Yb, or U) with a partially filled f
shell. At room temperature the physics of these materials
is of essentially freely fluctuating localized magnetic mo-
ments (the f electrons) weakly coupled to a wide conduc-
tion band (involving the non-f electrons) At low temper-
atures and energies (T &10-50 K) the physical prop-
erties are approximately those of a very-large-mass
(-100-1000 times the free electron mass) Fermi liquid;
neither the local moments nor the wide band of conduc-
tion electrons seem to exist as separate excitations [ll. It
is widely believed [2] that the quenching of the local mo-
ments into a heavy Fermi liquid has something to do with
the Kondo efl'ect [3]. The Kondo effect involves a single
localized magnetic impurity weakly coupled to a wide
conduction band; at low temperatures the local moment is

quenched because it forms a singlet with a wave packet of
conduction electrons. In the lattice case there are at least
two possibilities: The local moments may be quenched by
the conduction electrons in a lattice version of the Kondo
effect, or they may couple to each other, forming a mag-
netically ordered state. Understanding the interplay be-
tween these two possibilities is the central unsolved prob-
lem in the theory of heavy fermion materials [4,5].

In this Letter we state and discuss our results for the
behavior of a simple one-dimensional model which we

hope contains the important physics of the Kondo effect
and magnetic ordering. We will give the details of our
calculations in a later paper [6]. Our model is a generali-
zation of the "Kondo necklace" Hamiltonian of Refs.
[5,7] and consists of two spin- —,

' chains, one representing
the local moments and one representing the magnetic de-
grees of freedom of the conduction electrons. Within
each chain there is an anisotropic Heisenberg interactionJ„=J~ =J& &J, and between the two chains a Kondo in-
teraction Jtr. Writing S(i) for the spin at site i in the
"local moment" chain and r(i) for the spin at site i in
the "conduction electron" chain our Hamiltonian is

H =Hs+H +Hs

N

Hs= g J [S"(t)S"(i'+1)+S (i)S (i +1)]

+J S'(i)S'(i +1),

N

Hs. =Jtt g S(i) r (i ) .

(3)

(4)

H.tt=g Jtto'(i)+ —,
' (J, +J;)o"(i)o"(i+1). (5)

H, tt has been solved by Pfeuty [9]. It has three phases:
For (J, +J;)/4Jtr ( —1 the two chains are ferromagnet-
ically ordered with S'(i) = —r '(i), for (J, +J;)/4J&

The case where only one chain has magnetic interaction,
i.e., J&,JP 0 should be most closely related to actual
heavy fermion materials. The symmetric case J& =Jf.,
J;=J, may be more easily solved. The Kondo necklace
model [5] corresponds toour model for Jf =J, =J,'=0.

There are three separate regimes where our model is
tractable: large negative Jtr, large positive Jtr, and small
Jtr. For large negative Jtr we need only consider the trip-
let combination of S and r on each site i; when projected
into this subspace the model becomes a spin-one chain
with exchange constants J~ =(J&+J~)/4 and J, =(J,
+J;)/4. The physics of the spin-one chain is known [8].
For large positive Jg relative to J&' the model maps onto
the Ising model in a transverse field. To perform the
mapping, we label the possible states of the spin chain by
the total spin S(i) and total z component M(i) on site i.
In the limit J&'=0 our Hamiltonian conserves all the
M(i) separately and there is a gap of order Jtr between
the ground state and any state containing a site with
M(i)~0. By identifying the S(i) =1, M, (i =0) state
with an Ising state with the spin down at site i and the
S(i) =0, M(i) =0 state with an Ising state with the spin
up at site i we find we may write H, Eq. (1), for Jf' =0,
in the subspace M(i) =0 as (here cr is a Pauli matrix)
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& 1 each chain is antiferromagnetically ordered, and in
the remaining phase there is no long-range order and
there is a gap to all excitations. The phase transitions at
Jx. = ~ —,

' (J, +J;) are in the two-dimensional Ising
universality class [9]; thus exponents and the asymptotic
behavior of correlation functions may be determined.
Away from the transition points there is a gap 4, to exci-
tations of size

r Jx —
—,
'

r J, +J,' r r
and all correlation func-

tions fall oA exponentially. In the ordered phases the or-
der parameter, p =(S'), grows as p'i, and at the transi-
tion the (S'(x)S'(0)) correlations fall oA' as x ' . For
J~ & 0 and J& =J& =0 the model is exactly soluble and
the above statements are rigorously correct. We have
also shown that a small nonzero J&,J& leads to correc-
tions to H, fr of the form C~cr~(i)cr (i+ I )+C2o'(i)o (i
+1) with Ci, C2-J~/JIr. For small C~ and C2, these
terms are irrelevant perturbations in the renormaliza-
tion-group sense; this follows on general grounds from
properties of the d=2 Ising transition [10], and we have
also verified it by an explicit calculation using the
methods of Ref. [9]. We note that the large Jx. mapping
onto the transverse-field Ising model and therefore the re-
sults concerning the order and nature of the transitions
apply in any spatial dimension.

The mapping onto the Ising model in a transverse field
plus irrelevant perturbations breaks down when Jf'/Jx-
becomes sufficiently large. To study the model for small
Jg we use an expansion in Jg. A single spin- 2 chain
with

r J, r
& J~ has Ising ferromagnetic or Ising antiferro-

magnetic order, which is stable to small perturbations. A
spin- —, chain with

r J, r
& J& is in a critical state at T=O,

with power-law decay of x-y spin correlations with ex-
ponents determined by J,/Jj. To determine the eA'ect of
a small nonzero Jx we express Hv, [Eq. (4)] in terms of
the critical fields and then use standard Abelian bosoniza-
tion methods [11] to determine if Hg, is a relevant or ir-
relevant perturbation and, if relevant, to what state the
system flows. We consider first a simultaneous expansion
in both J,/J& and Jx/J& in the symmetric case Jj =J~,
J, =J,' and then indicate the modifications arising in the
more general case of arbitrary J, and inequivalent chains.
We will present the details elsewhere [6].

For a single spin-2 chain one may write the low-

energy excitations in terms of two boson fields, ON and OJ.
In the symmetric case of our two-chain problem we may
write the Hamiltonian in terms of the symmetric (S) and
antisymmetric (A) combinations of the boson fields of the
two chains. The result at leading order in J. and Jx.
neglecting all but the most relevant operators is [6]

1
" J. VeN, s 3J, JgH= — dx 1— + 1+ +2" 7t 2Ã Z 7r

+J (Bcos28, +Bcos28 „+Ccos8, ) .

veJ s J,+2K, r
VeN, A + 1+ 3J,

2R

VeJ,A

2R

(6)

For calculating universal quantities, the following expression for the various spin operators in terms of the phase fields
is sufficient:

S'(j) [V8q J+V8 J]+( —1) constcos(8q 1+8&J),1
(7a)

. es,N+eA, N . eS,N+eA, NS+(j) ( —1)iconstexp i ' ' +constcos(8s 1+8& J)exp i
2 2

(7b)

ve, ve, ,2 2
2 2+ ' +J Bcos e +Bcos e, +Ccosk,„e,

2K , 2z ~A

The expressions for r(j) are identical to those for S(J) except that 8q+8z is replaced by 8q —8&. The 0 fields
have the commutation relations [V(8~) (~8 ) J]=~2zig„b(xx'—'nL) and [V(8N)~, (8J)s] =0; thus (2z)
xV(8N)~ is the conjugate momentum to (2z) ' (8J)g.

We introduce rescaling factors k~ ~ and velocities vs ~ defined for small Jx.,J, as ks ~ = I+J,/x Jir/4m+
t'z, z = I+J&/z~ Jx/2m+ . After factoring out the velocities and rescaling the fields by the 1's and the canonically
conjugate momenta by the X 's, the Hamiltonian becomes

Ve, s Vejs+ '
+VA

2Z 27K

Hamiltonians of the form of Eq. (9) have been previ-
ously studied [11,12]. It is known that an operator of the
form cosy8 is relevant if 2 y & 2; also if an operator of
the form Jcose is the most relevant operator it leads to
the opening of a gap h, —J ~~ ~ in the excitation spec-
trum. For small J„Jgthe coseN A operator is relevant
and there is a gap to antisymmetric fluctuations: At low

energies the two chains are locked together, either anti-

r

ferromagnetically (if Jir & 0) or ferromagnetically (if
Jx. &0). We must then consider the theory in the sym-
metric sector. For Jg & 0 two cases arise: If J, & —

4 J~
there is a gap in the symmetric sector and thus to all exci-
tations. We interpret this as the weak coupling analog of
the quantum disordered phase found in the J~,J,
limit. For J, & —

4 J~ there is no gap; instead a phase
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with x-y correlations exists. For J~ &0, similarly two

phases exist. If 4J, & )Jx~ there is a gap to all excita-
tions; we interpret this as the weak coupling analog of the
Haldane gap phase previously discussed. For 4J, &

~
Jx.

~

a phase with x-y correlations exists.
We now sketch the extension of our results to larger J,.

For J~ 0 the most relevant operators induced by Jg
have the form given in Eq. (8) with A,)=A,z =1+J,/z.
In a single spin chain as J, is decreased past the fer-
romagnetic Ising point (J, = —J~) a first-order transi-
tion occurs, and the bosonization description breaks
down. For all negative Jx the transition remains first or-
der with the transition line at J, = —J& because the fully
polarized ferromagnetic state is an eigenstate which max-
imizes (S; S~), (r rj), and (S~' rj); and for —J, & J& it
is the nondegenerate ground state. For small Jx &0 the
transition remains first order but the boundary will curve.
At the antiferromagnetic Heisenberg J, =J~ point of a
single spin chain, another operator, not explicitly written
in Eqs. (6) or (9), becomes marginal and, for J, & J~,
relevant. The flow equations for this variable are
Kosterlitz-Thouless type and predict that the Ising order
parameter grows as exp[ —1/(J, —J~)'~2]. In addition,
as J, goes to J& from below, the dimension of all of the
operators multiplying Jx in Eq. (8) approaches 1, so near
the antiferromagnetic Heisenberg point all gaps scale as
(Jx)" with @=1, but the gap to antisymmetric fluctua-
tions need not be larger than the gap to symmetric fluc-
tuations. The proper description of the small Jx, (J,
—J&) region requires solution of coupled multivariable
scaling equations and will be discussed in detail elsewhere
[6]. We find that the phase boundary has the essential
singularity form shown in Fig. 1. At the transition be-
tween the gapped and Ising phases the antisymmetric
fluctuations between the chains become gapless, as in the
Jg,J, limit.

We have also considered the case of two coupled ine-

quivalent spin chains, so J &J'. This is more complicat-
ed because the problem does not separate into symmetric
and antisymmetric sectors, and the various operators pro-
duced by Jx. pick out different linear combinations of
fluctuations between the two chains. Nevertheless we be-
lieve the important features of the phase diagram turn
out to be equivalent to that of the two equivalent chains.
We sketch the argument here and give the details else-
where [6]. We consider first two inequivalent chains with
(for Jx =0) velocities U~-J& and v2 —J& and rescaling
factors X~ and A, 2, with A. ~, )I,2 & J2 so neither chain is Is-
ing ordered. To leading order in Jg the leading relevant
operator in Eq. (6) is Juncos(ON~

—O~z). This leads to a

gap in a sector rotated from the antisymmetric sector by
an angle determined by the anisotropy. Projecting the
remaining terms onto the orthogonal, ungapped sector S
leads to an operator of the form Jxcos28Jg/K, with
eA'ective exponent A, given by a complicated combination
of v ~, A, ~, v 2,12. The Jg operator is relevant or irrelevant
according [13] to whether K is greater or less than 1, and

Jz

FIG. 1. Phase diagram for two coupled spin chains, de-

scribed by Eqs. (1)-(4) of the text. Jx is the coupling between

chains; Jg &0 means antiferromagnetic coupling. J, is the Is-

ing coupling in one chain; the units are chosen such that the x-y
coupling J~ =1. Phase S is a singlet phase with a gap to all ex-
citations, phase 0 is the Haldane gap phase of the S=1 antifer-
romagnet, phases F and A are Ising ferromagnet and antifer-

romagnet, respectively, and in phase XY there are power-law

x-y correlations. The heavy solid line indicates a second-order
transition, the dashed line a first-order transition, and the dot-
ted line a Kosterlitz-Thouless transition.

the transition when A.,g passes through l is Kosterlitz-
Thouless as before. However, for v~&&U2, )j,-(v2/v~)'
«1. For v~/U2&14, the gapless regime extends to the
Heisenberg point for infinitesimal J~. Clarifying the
nonzero Jx behavior there requires a more sophisticated
analysis which we have not yet completed.

In the Kondo necklace model [5], v2 0 at fixed J»
and there is an x-y anisotropy. For Jx ~ our analysis
sho~s a singlet phase where a gap to excitations occurs.
Our small-JIr results are based on an expansion in

Jx/(v ~ v2) ', which obviously breaks down as v2 0. A
different approach would be required to determine wheth-
er the Kondo necklace model has an XYphase as Jx 0.

By connecting up the weak coupling and strong cou-
pling results we obtain the phase diagram shown in Fig.
1. We have inferred the existence of the multicritical
point where phases F, XY, and S meet from the absence
of the XY phase in the large-Jx calculation and its pres-
ence in the small-Jq calculation. The H-A and 5-A
boundaries are Ising transitions because a Z2 symmetry
is broken. The Heisenberg antiferromagnetic point J,
=

~ J&
~

must be analyzed by more sophisticated methods.
For the J, & 0 region, we have already argued that for
J~ ~ 0 the transition between phases XY and F is first or-
der. However, the transition from phase F to phase S is

Ising for J~ +~. We believe that the order of the
phase transition changes at the multicritical point whose
existence we inferred above. The XY-S line is known

[11,12] to be Kosterlitz-Thouless at weak coupling, where
a single operator, cos2ej g, becomes relevant. The XY-H
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line is a continuation of the XY-S line and is Kosterlitz-
Thouless for the same reason as the XY-S line, in agree-
ment with previous results [8] for Jt;

The Kondo and Anderson lattice models, more realistic
models which include the charge degrees of freedom of
the conduction electrons and (for the Anderson model)

the possibility of valence fluctuations on the local moment

site, have also been studied numerically in one dimension

[13,14]. At band fillings corresponding to one conduction

electron and one local moment electron per site, the

ground state was found to be insulating with no long-

range magnetic order and a gap to both charge and spin

excitations. The spin degrees of freedom of a one-

dimensional Fermi gas cannot be simply modeled as a

spin chain. However, we believe that the magnetic exci-
tations of this model are described by our Hamiltonian

with Jtt &0, and antiferromagnetic Heisenberg interac-
tions in both chains. For these parameters we find the

ground state to be nonmagnetic in at least qualitative

agreement with the numerical results.
In conclusion, we comment on implications of our re-

sults for theories of heavy fermion metals. Some mean-

field theories predict that one has either a Kondo phase

with no magnetic correlations or a magnetic phase with

no Kondo correlations, with a strongly first-order transi-

tion separating the two phases [15]. By contrast, the

transitions we find between Kondo and magnetic states
are conventional second-order (or Koster]itz- Thouless)
T=O phase transitions produced by tuning a parameter,

in qualitative agreement with a previous suggestion of
Doniach [16],although we do not find any evidence of the

unusual critical behavior suggested in Ref. [16]. The

short length scale physics varies smoothly near the transi-

tions. We suspect that these will be generic features of
models of heavy fermion materials with magnetic interac-

tions. One aspect of our results which we believe is not

generic is the persistence of the quantum disordered

phases S and H for not too asymmetric chains and arbi-

trarily small values of Jg over a range of J.-. We believe

that this is an eA'ect peculiar to one-dimensional half-

filled bands and that in higher-dimensional generalization

of our model magnetic order would occur for sufficiently

small J~.
Our results may also be relevant for the newly dis-

covered "heavy fermion insulator" compounds [17]. In

these materials, because of the band filling, the Kondo

eAect apparently leads at low temperatures not to a heavy

Fermi liquid but to a small-gap insulator. The low-

temperature magnetic susceptibility g(q, to =0) of these

materials has been measured via neutron scattering [18]
and found to be q independent for some range of q. It
has been suggested [18] that this q independence is a gen-

eric property of the heavy fermion insulator state. Our
model (except for the restriction to one spatial dimen-
sion) should be directly relevant to these materials. In it

the susceptibility is in general not q independent; indeed
the q=0 component of g or g„diverges at the transi-
tions between the nonmagnetic phase S and the fer-
romagnetic phases XY or F and the q =z component of
g„diverges at the S-8 transition. Therefore we believe
that within the Kondo lattice model the observed q in-
dependence of g(q, co =0) in the heavy fermion insulator
compounds simply implies that a parameter (equivalent
to our J, ) happens to have some particular value.

One of us (S.S.) thanks F. D. M. Haldane for helpful
discussions and AT%.T Bell Laboratories for financial
support.
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