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The universal dynamic and static properties of two-dimensional antiferromagnets in the vicinity of a
zero-temperature phase transition from long-range magnetic order to a quantum-disordered phase are
studied. Random antiferromagnets with both Neel and spin-glass long-range magnetic order are con-
sidered. Explict quantum-critical dynamic scaling functions are computed in a 1/N expansion to two-

loop level for certain nonrandom, frustrated square-lattice antiferromagnets. Implications for neutron
scattering experiments on the doped cuprates are noted.
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Recently, there have been a number of fascinating and
detailed experiments [1-3] on layered antiferromagnets
(AFMs) close to a zero-temperature (T) phase transition
at which magnetic long-range order (LRO) vanishes.
The most prominent among these are the cuprates [1,2],
which, upon doping with a small concentration of holes,
lose their long-range Neel order and undergo a transition
to a T=0 phase with magnetic, long-range spin-glass or-
der; at a larger doping there is presumably a second tran-
sition to a quantum-disordered (QD) ground state.
There have also been low-T experiments on layered
AFMs on frustrated lattices [3], which have at most a
small ordering moment. A remarkable feature of the
measured dynamic susceptibilities of these AFMs is that
the overall frequency scale of the spin excitation spec-
trum is given simply by the absolute temperature. In par-
ticular, it appears to be independent of all microscopic
energy scales, e.g. , an antiferromagnetic exchange con-
stant.

In this paper, we show that this anomalous dynamics is
a very general property of finite-T, "quantum-critical"
(QC) [4] spin fiuctuations near the initial onset of a T =0
QD phase. We present the first calculation of universal,
QC dynamic scaling functions in 2+1 dimensions; these
will be calculated for a model system —nonrandom, frus-
trated two-dimensional Heisenberg AFMs with a vector
order parameter. Quenched randomness will be shown to
be a relevant perturbation to the clean system, and must
be included in any comparison with experiments. Scaling
forms for the dynamic susceptibility in random AFMs
will be presented, and exponent (in)equalities will be dis-
cussed.

QC dynamic scaling functions can also be studied in
other dimensions. In 1+1 dimensions the exact scaling
functions can be obtained by a simple argument based on
conformal invariance [5]; most (3+1)-dimensional mod-
els are in the upper-critical dimension and we expect the
scaling functions to be the free-field type with logarithmic
corrections. This leaves 2+ 1 dimensions, which is stud-
ied here for the first time in the context of AFMs; howev-
er, our results are more general, and should also be ap-
plicable to other phenomena like the superconductor-

insulator transition [6].
Most of our discussion will be in the context of the fol-

lowing quantum AFMs:

8 =$J~JS; S, ,

where S; are quantum spin operators on the sites i of a
two-dimensional lattice, and the JJ are a set of possibly
random, short-range antiferromagnetic exchange interac-
tions. The lightly doped cuprates are insulating at T=O,
suggesting a model with completely localized holes: A
specific form of 'P with frustrating interactions was used

by Gooding and Mailhot [7] and yielded reasonable re-
sults on the doping dependence of the T =0 correlation
length. Models with mobile holes have also been con-
sidered [8] and the results will be noted later.

Two different classes of ground states of Jit can be dis-
tinguished: (i) states with magnetic LRO (S;)=m; and
(ii) QD states which preserve spin-rotation invariance
(S;)=0. Further, we will distinguish between two dif-
ferent types of magnetic LRO: (A) Neel LRO in which

iQ R
case m;-e ' with Q the Neel ordering wave vector
and (B) spin-glass LRO in which case m; can have an ar-
bitrary dependence on i, specific to the particular realiza-
tion of the randomness. The lower critical dimension of
the Heisenberg spin glass [9] may be larger than 3—in

this case the spin-glass LRO will not survive to any finite
T, even in the presence of a coupling between the layers.
This, however, does not preclude the existence of spin-
glass LRO at T=O.

Consider now a T=O phase transition between the
magnetic LRO and the QD phases, induced by varying a
coupling constant g (dependent on the ratios of the J;~ in

P) through a critical value g=g„where there is a
diverging correlation length g- ~g

—g, ~
. For Neel

LRO, 1/( is the width of the peak in the spin structure
factor at the ordering wave vector Q. For spin-glass
LRO, there is no narrowing of the structure factor, and g
is instead a correlation length associated with certain
four-spin correlation functions [9]. At finite T we can
define a thermal length gT- T ' ' (z is the dynamic crit-
ical exponent) which is the scale at which deviations from
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T=0 behavior are first felt. The QC region is defined by
the inequality (2. & g (Fig. 1); in this case the spin system
notices the finite value of T before becoming sensitive to
the deviation of g from g„and the dynamic spin correla-
tions will be found to be remarkably universal.

We consider first the case (A)—a phase transition
from Neel LRO to a QD phase; such transitions can
occur for both random and nonrandom )Y. At T=O the
static spin susceptibility g will have a divergence at g =g,
and wave vector q=Q: g(q=Q, co=0) —lg

—g, l
"with

y=(2 —ti)v. The form of the (q, nI, T)-dependent sus-

ceptibility in the QC region can be obtained simply by
finite-size scaling: (2. acts as a finite size in the
imaginary-time direction for the quantum system at its
critical point [4,6] and hence implies the scaling form

tI 2 I q
—

Q I

T(2 —q)/z T I/z '
k Tg q, co (2)

where a ~, a 2 are nonuniversal constants, and @ is a
universal, complex function of both arguments. The devi-
ations from quantum criticality lead to an additional
dependence of 4 on (2/g: This number is small in the
QC region and has been set to 0. Also of experimental
interest is the local dynamic susceptibility gL (co)
=fdqg(q, ro)=—gq+igL', with real (imaginary) part gL
(gL') [note d q=d q/4z l. As g'- lq

—
Ql

+" for

lq
—

Ql » co'/', T'/', the real part of the q integral is dom-
inated by its singular piece only if g &0. However, gL
will involve only on-shell excitations, and the imaginary
part of the q integral is expected to be convergent in the
ultraviolet for both signs of g. Thus the leading part of
gL' will always obey the scaling form

gl (N ) a 3l ri)l "F(h n3/ks T)

with

(3)

QUANTUM-CRITICAL (QC)
T

RENORMALIZED ~ ~ QUANTUM
CLASSICAL y DISORDERED (QD)

g
) MAGNETIC LRO ) g

FIG. l. Phase diagram of /f (after Ref. [41). The magnetic
LRO can be either spin-glass or Neel type, and is present only
at T 0. The boundaries of the QC region are T-lg —g, l'".
For nonrandom )Y which have commensurate, collinear, Neel
LRO for g & g„allof the QD region (g & g, ) has spin-Peierls
order at T =0—this order extends to part of the QD region at
finite T.

(4)

F(y) y "fdx lm@(x,y) a universal function, and a3 a
nonuniversal number. gL also has a part obeying an iden-
tical scaling form which is dominant only if ri & 0. As we

expect gL-co for small co, we have the limiting forms

F-sgn(y)lyl' " for y«1 and F-sgn(y) for y»1.
Note that all the nonuniversal energy scales only appear
in the prefactor a3 and the frequency scale in F is deter-
mined solely by T.

Now we consider the other case (8)—the transition
from spin-glass LRO to a QD phase. We do not expect
singular behavior as a function of q because the spin-
condensate I; is a random function of i; therefore the
scaling form (2) will rtor be obeyed. However, the lo-

cal susceptibility gL(nI„)=fo—' dr e' "'C(r), C(r)
=($;(0) S;(z)) [where co„(r)is a Matsubara frequen-
cy (time) and the bar represents average over sites i], will

be quite sensitive to spin-glass LRO. In the spin-glass
phase at T=O, lim, C(r) =m; &0 [9]. In the QD
phase, numerical studies of random, spin- —,

' AFMs [10]
suggest that at T=0, C(r ) —1/r ' ', a & 0, for large r.
At the critical point g =g, and T =0, we therefore expect
the intermediate scaling behavior with C(r) —I/r '+",
gL-gL-lcol", and —I & p &0. In the QC region the
scaling form (3) for gL continues to be valid, despite the
inapplicability of (2). The limiting forms for F are as in

(A), although the value p is different: The Edwards-
Anderson order parameter obeys m; —lg

—g, l

s for

g & g, ; connecting the form of gL in the spin-glass phase
to the critical point, we get

p = —1+P/zv.

We now consider various model systems for which ex-
ponents and/or scaling functions have to be computed.

We consider first a transition from Neel LRO to a QD
phase in a nonrandom spin-2 square lattice AFM with,

e.g. , first- (J~) and second- (J2) neighbor interactions
[11,12]. As has been discussed in great detail elsewhere

[12], spin-Peierls order appears in the QD phase in this
case (and in all other nonrandom AFMs with commensu-

rate, collinear, Neel LRO). We now argue that the two-

spin, QC dynamic scaling functions are not sensitive to
the spin-Peierls IIuctuations, and one may use an effective
action for only the Neel order. It was found in the
large-M calculations for SU(M) AFMs that the asymp-
totic decay of the spin-Peierls correlations is governed by
a scale esp, which is much larger (for M large) than the
scale g governing the decay of the Neel order [12,13].
The two scales are related by esp =( ', where p~ is a

critical exponent given by p& =0.062296 to leading order
in 1/M [13]. Fisher [14] has noted that this is reminis-
cent of three-dimensional statistical models with a
"dangerously irrelevant" perturbation; e.g. , the d =3
classical XY model with a cubic anisotropy [15] has a

phase transition in the pure XV class, but the "irrelevant"
cubic anisotropy becomes important in the low-T phase at
distances larger than ggI (y& 1). By analogy, we may
conclude that the spin-Peierls fluctuations are irrelevant
at the critical fixed point governing the quantum phase
transition, and relevant only at the strong-coupling fixed

point which governs the nature of the QD phase.
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It has been argued in Ref. [4] that the dynamics of the
Neel order parameter is well described by an O(3) non-
linear sigma (NLtr) model in the renormalized classical
region (Fig. 1). The gist of the above arguments is that
this mapping continues to be valid in the QC region —but
not any further into the QD phase. We have computed
properties of the QC region by a 1/N expansion on a
O(N) NLo model:

S„-= drd r (Vn) +1
'

z . & 1 r)n

2g4 c~
n =1,

Re@ '=Cg +x +, x y small.

The universal number Cg, to order 1/N, is

Cg
' =8(1+0.22/N), 8-21n[(1+J5)/2] .

(7)

Im@ has a singular behavior for x,y small: Im@(x
=Oy)-exp( —38 /2iyi)/N while Im@(y &x)-y

where n is a real ¹omponent spin field, and c is a spin-
wave velocity. The saddle-point equations of the large-N
expansion [16] were solved and the correlation functions
were shown to satisfy the scaling forms (2),(3) to order
1/N (two-loop level). We determined the values of
@(x,y) for real frequencies y by analytically continuing
the Feyn man graphs and subsequently numerically
evaluating the integrals. The numerical computations re-
quired the equivalent of 40 h of vectorized supercomputer
time.

Our results for Im@ and F for N=3 are summarized
in Figs. 2 and 3. The transition has the exponent z =1
which fixes the constant ay=bc/kq in Eq. (2). We nor-
malized 4(x,y) such that t)4 '/8x ioo=l. Analytic
forms for @can be obtained in various regimes. We have

F(y) ='
( )

Dg sin(zt)/2)
sgny, y))1.

(10)

As g is small, F is almost linear at small y. At N=,
F=sgn(y) e(ly I

—8)/4
We now study 'S with quenched randomness. The

simplest model adds a small fluctuation in the Jl bonds of
the Ji-Jq model above; i.e., Jl Jl+bJ| where bJ| is

random, with rms variance « Jl, ensuring that a Neel-
LRO to QD transition will continue to occur. However,
the transition will not be described by the "pure" fixed

point as v~„„=0.705~0.005 [18] and thus violates the
bound v& 2/d=l required of phase transitions in ran-
dom systems [19]. At long wavelengths we expect the
spin fluctuations to be described by the NLo model, S„-
[Eq.(6)], with random, space-dependent, but time-
independent, couplings g, c. A soft-spin version of S„-
with random couplings in d =4 —e —e, space dimensions
and e, time dimensions has been examined in a double
expansion in e, e, [20]. The expansion is poorly behaved,
and for the case of interest here (N=3, e=l, e, =l)
the random fixed point has the exponent estimates
ri= —0.17, z=1.21, v=0.64, p= —0.15. Note that (i)
p, q are negative, unlike the pure fixed point, and (ii) v is
smaller than 2/d, suggesting large higher-order correc-
tions.

Consider next a /f on the square lattice with only Jl

xexp( —38 /2ixi)/N. With either x or y large, 4 has
the form

D ( 2 2) —I +v/2+
Q

Dg =1 —0.3426/N .

The exponents p, ri have the known [17] expansion p =ri
=8/(3z N) —512/(27m N ) &0. The scaling function
for the local susceptibility, F(y), has the limiting forms

IP

sgn(y)
'

iyi' &, y«I,0.06

0.25—

FIG. 2. The imaginary part of the universal susceptibility in
the QC region, 4, as a function of x =ftcq/keT and y =/leo/
k+T for a nonrandom square lattice AFM which undergoes a
T 0 transition from Neel-LRO to a QD phase. The results
have been computed in a I/N expansion to order l /N and evalu-
ated for N 3. The two-loop diagrams were analytically con-
tinued to real frequencies and the integrals then evaluated nu-
merically. The shoulder on the peaks is due to a threshold to-
wards three-spin-wave decay.

0.00

FIG. 3. The imaginary part of the universal local susceptibil-
ity, F, for the same model as in Fig. 2. We have F(y )
=y "fdx lm@(x,y). The oscillations at large y are due to a
finite step size in the momentum integrations.
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couplings, but with a small concentration of static, spin-
less holes on the vertices; this model will display a Neel-
LRO to QD transition at a critical concentration of holes.
In the coherent-state path-integral formulation of the
pure model, each spin contributes a Berry phase which is

almost completely canceled in the continuum limit be-
tween the contributions of the two sublattices [21]. The
model with holes will have large regions with unequal
numbers of spins on the two sublattices: Such regions
will contribute a Berry phase which will almost certainly
be relevant at long distances. Therefore the field theory
of Ref. [20] is not expected to describe the Neel-LRO to
QD transition in this case. A cluster expansion in the
concentration of spins has recently been carried out by
Wan, Harris, and Adler [22], and yields the exponents
g= —0.6, z=1.7, v=0.8, p= —0.35. Note again that
p, t) & 0, although the violation of v & 2/d suggests prob-
lems with the series extrapolations.

Finally, we have also considered [8] the consequences
of mobile holes in a nonrandom AFM. The spin waves
and holes were described by the Shraiman-Siggia [23]
field theory. Integrating out the fermionic holes led to
a spin-wave self-energy Z„--a&~q

—
Q~ +a2co„+

(a ~, aq constants) at g =g„T=0; nonanalytic ~cu„~ terms
appear only with higher powers of ~q

—
Q~, co„indicating

that the Neel-LRO to QD transition has the same leading
critical behavior as that in the undoped, nonrandotn J~-
J2 model above. The exponents and scaling functions are
identical, but the corrections to scaling are diA'erent.

To conclude, we discuss implications for neutron
scattering experiments in the doped cuprates [1,2]. The
significant low-T region with a T-independent width of
the spin structure factor indicates that the experiments
can only be in the QC region (Fig. 1) of a T=O transi-
tion from spin-glass LRO to QD: The diverging spin-

glass correlation length will then not be apparent in the
two-spin correlations. The numerical results of Ref. [7]
also indicate that, in the absence of a coupling between
the planes, a spin-glass phase will appear at any nonzero
doping. The experimental gL has been fitted with a form
I (~ co

~
)F(h rolka T) [I] which is compatible with the

theoretical QC result (3) if I- ~co~". A fit with this form
for I in La] 96Sr004Cu04 yielded p = —0.41+ 0.05 with
all the predicted points within the experimental error bars
[24]. As it appears that only random models have p & 0,
it is clear that the eA'ects of randomness are experimen-
tally crucial, confirming the theoretical prediction of their
relevance. Further theoretical work on the QC dynamics
of random quantum spin models is clearly called for.
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