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Results that illuminate the physical interpretation of states of nonperturbative quantum gravity are
obtained using the recently introduced loop variables. It is shown that (i) while local operators such as
the metric at a point may not be well defined, there do exist nonlocal operators, such as the area of a
given two-surface, which can be regulated diffeomorphism invariantly and which are finite without re-
normalization; (ii) there exist quantum states which approximate a given metric at large scales, but such
states exhibit a discrete structure at the Planck scale.
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It is by now generally accepted that perturbative ap-

proaches to quantum gravity fail because they assume
that space-time geometry can be approximated by a
smooth continuum at all scales. What is needed are non-
perturbative approaches which can predict —rather than
assume —what the true nature of the microstructure of
this geometry is. In such an approach, background fields
such as a classical metric or a connection cannot play a
fundamental role; quantum theory must be formulated in
a diffeomorphism-invariant fashion. An important task
in these programs is then to introduce techniques needed
to describe geometry and to "explain" from first princi-
ples how smooth geometries can arise on macroscopic
scales.

Over the past five years, two avenues have been pur-
sued to test if quantum general relativity can exist non-
perturbatively. The first is based on numerical simula-
tions [1],while the second is based on canonical quantiza-
tion [2-6]. This Letter concerns the second approach.
While the canonical approach itself was introduced by
Dirac in the late 1950s, the recent work departs from the
early treatment in two important ways: (i) It is based on
a new canonically conjugate pair, the configuration vari-
able being a connection [2,5]; and (ii) it uses a new repre-
sentation in which quantum states arise as suitable func-
tions on the space of closed loops on a (spatial) 3-
manifold [2,3,6]. The new ingredients have led to techni-
cal as well as conceptual simplifications which, in turn,
have led to a variety of new results. In particular, these
methods have opened up bridges between quantum gravi-
ty and other areas in mathematics and physics such as
knot theory, Chem-Simons theory, and Yang-Mills the-
ory.

The purpose of this Letter is to report on the picture of
quantum geometry that arises from the use of the loop
variables. To explore the geometry nonperturbatively, wc
must first introduce operators that carry the metric infor-
mation and regulate them in such a way that the final
operators do not depend on any background structure in-
troduced in the regularization. We wi11 show that such
operators do exist and that they are finite without renor-

malization. Using these operators, we seek nonperturba-
tive states which can approximate a given classical
geometry up terms O(lp/L), where lp is the Planck
length and L is a macroscopic length scale, lengths being
defined by the given metric. We find that such states do
exist but that they exhibit a discrete structure at the
Planck scale lp. Such a result was anticipated on general
grounds since the 1930s. Indeed, there exist a number of
quantum gravity programs that begin by postulating
discrete structures at the Planck scale and then attempt
to recover from it the known macroscopic physics [7].
The key difference is that, in our approach, discreteness is
arrived at by combining general relativity with quantum
mechanics using loop variables.

In this Letter, we will only sketch the main ideas in-
volved; details will appear elsewhere [8].

Let us begin with the classical phase space. The
configuration variable A,' is a complex SU(2) connection
and its conjugate momentum E,', the mathematical ana-
log of the electric field in Yang-Mills theory, is a triad
with density weight 1 [51. (Throughout we will let a,
b, . . . denote the spatial indices and i,j, . . . , the internal
indices. A tilde over a letter will denote a density weight
1.) The first step is the introduction of loop variables [6]
which are manifestly SU(2)-gauge-invariant functions on
the phase space. The configuration variables are the Wil-
son loops: Given a closed loop y on the 3-manifold Z, we
set

T[y]= z TrPexpG&~A, dl', (1)
where G is Newton's constant. (Throughout, we use the
2-dimensional representation of the gauge group to evalu-
ate traces. ) Variables with momentum dependence are
constructed by inserting E,' at various points on the loop
before taking the trace. Thus, for example, the loop vari-
able quadratic in momenta is given by

QyT"[y](y,y') =
z Tr PexpG, A, dy' E'(y')

r
i y r

PexpG„A dy E (y)

(2)
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where y and y' are any two points on the loop y. Note
that in the limit when the loop y shrinks to a single point
x, T"[y] tends to 4—E (x)E"(x), which, when E,' is
invertible, is related to the metric q,b by detq(x)
xq" (x) =E (x)E"(x). Thus (if the fields 2, and E'
are smooth) one can recover the metric from the loop
variable T".

In quantum theory, states are represented by suitably
regular functions 0 [a] of loops satisfying certain algebra-
ic conditions and quantum operators corresponding to the
loop variables are defined in such a way that the Poisson
algebra of the loop variables is mirrored in the commuta-
tor algebra in the usual fashion. To define these opera-
tors, it is convenient to use the bra-ket notation, 9'[a]
-(a~@), and specify the action of operators on bras (a~
which correspond directly to (certain equivalence classes
[9] of) loops. For example, the action of the loop opera-
tor T[y] is given by

&a~oT[y] 2 (&ap y~+&ap y '~), (3)

where aP y is an "eye glass loop" which is equal to
ag& yg ' for an arbitrary segment g joining a and y
and the same segment is used in both terms [10]. Note
that, because the connection A, is complex, the T, are
not expected to be self-adjoint, whence there is an intrin-
sic asymmetry between their action on bras and kets.
Similarly, the action of higher-order loop operators such
as T"[y]( ,y'y) also involves just gluing, breaking, and
rerouting of loops.

It is tempting to try to define the local metric operator

Q[a)]:=„,d'x(E co,E"co ) 'i' (4)

where the integral on the right is well defined because the
integrand is a density of weight 1. When the triads are
smooth, we can reconstruct the density-weighted inverse
metric from the knowledge of Q[co] (for all co). In terms
of the classical loop variable T", this function can be
reexpressed as

as the limit of T'. However, the resulting operator has
to be regulated and then renormalized —it involves prod-
ucts of F and E; evaluated at the same point —and, be-b

cause of the density weights involved, the renormalized
operator carries an imprint of the background structure
used in this procedure. This is because the renormaliza-
tion procedure changes the density weight as it replaces a
product of delta functions by a single delta function and,
in the absence of a metric, delta functions are densities.
(In Minkowskian field theories, there is a preferred back-
ground metric and the only ambiguity in defining analo-

gous operators is that of a multiplicative renormalization
constant. ) This appears to be a general feature of dif-
feomorphism-invariant theories and it obstructs the intro-
duction of meaningful local operator-valued distributions
carrying geometric information.

Fortunately, however, there do exist nonlocal operators
carrying the same information. We now sketch the con-
struction of two of these.

Note first that, given a smooth 1-form co, on Z, we can
define a function Q[co] on the classical phase space which

carries the metric information,

Qko] lim d x
e'~ 0

d y d y'f, (x,y)f, (x,y')( —
4 )T [yyy](y, y')co, (y)~ (y') (5)

where f,(x,y) is a smearing function, a density of weight
1 in x, which tends to b (x,y) as e tends to zero and

where yyy is any smooth loop that passes through points

y and y', such that it shrinks smoothly to a point as
y'~y. Expression (5) of Q[c0] is well suited for trans-
lation to quantum theory: We can define the quan-
tum operator Q[c0] simply by replacing T" in (5) by
the loop operator T" and taking the limit t. 0 in the
action of the operator on states. The resulting operator is
well defined —it carries no memory of the additional
structure used in the definition of the smearing
functions —and finite without. any renormalization [11].
The resulting action of the operator is quite simple. If a
is a nonintersecting loop [12], it is

&a( o Q[c0] =—f& ds(a'c0, (a(s)) )(a~ .
Ip

a

Thus, on nonintersecting loops, the operator acts simply

by multiplication. Hence the loop representation is well

suited to find states in which the 3-geometry —rather
than its time evolution —is sharp.

The second class of operators corresponds to the area
of 2-surfaces. Note first that, given a smooth 2-surface S
in Z, its area Ag is a function on the classical phase
space. We first express it using the classical loop vari-

ables. Let us divide the surface S into a large number A'

of area elements Sq, I =1,2, . . . , Ã, and set Ai' ' to be

d'& '(x)t. d'5' '(x')e ( ——')T" [y ](x x')
~ ~s QbC~ g

t

where e,i,„ is the (metric independent) Levi-Civita density of weight —1. Since T" approximates (detq)q' for smooth

metrics, Ai' " approximates the area function (on the phase space) defined by the surface elements Sl, the approxima-

tion becoming better as SI, and hence loops y. .. shrink. Therefore, the total area A~ associated with S is given by

As = lim JAP"'.
oo
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A

To obtain the quantum operator Ag, we simply replace
T" by the quantum loop operator T". This somewhat
indirect procedure is necessary because there is no well-
defined operator that represents the metric or its area ele-
ment at a point. Again, the operator Ag is finite and its
action is simple when evaluated on a nonintersecting [12]
loop a:

&cl As =(l~/2)1(s, a)(a), (9)
where I(S,a) is simply the unoriented intersection num-

ber between the 2-surface S and the loop a [4]. Thus, in

essence, a loop a contributes half a Planck unit of area to
any surface it intersects. The area operator also acts sim-

ply by multiplication on nonintersecting loops.
Because of the simple form of operators Q [co] and As,

a large set of simultaneous eigenbras can be immediately
constructed. There is one, (y~, associated to every nonin-
tersecting loop y [13]. Note that the corresponding ei-
genvalues of area are then quantized in integral multiples
of lp/2. There are also eigenstates associated with inter-
secting loops; these are discussed in [4,7].

Let us now turn to the second of our main results. The
goal here is to introduce loop states which approximate a
given 3-metric h,b on Z on scales L large compared to lp.
(Note that the large scale limit is equivalent to the semi-
classical limit since, in source-free, nonperturbative quan-
tum general relativity, 6 and G always occur in the com-
bination hG =/p. ) The basic idea is to weave the classi-
cal metric out of quantum loops by spacing them so that
on an average precisely one line crosses every surface ele-
ment whose area, as measured by the given h,b, is one
Planck unit. Such loop states will be called weaves.
Given a weave, one can obtain others by, e.g., adding
small fluctuations.

We now present a concrete example of such a state
which approximates a j7at metric h,b Using this. metric,
let us introduce a random distribution of points on Z =R 3

with density n (so that in any given volume V there are
nV[l+O(1/dnV)] points). Center a circle of radius
a (I/n) 'i at each of these points, with a random orien-
tation. We assume that a&&L, so that there is a large
number of (nonintersecting but, generically, linked) loops
in a macroscopic volume L . Denote the collection of the
circles by A. Because of the identities [6,9] satisfied by
the loop states, multiloops are equivalent to single loops,
whence there is a well-defined bra (h~. This is, as we now
indicate, a weave state with the required properties. To
see if it reproduces on a scale L » lp the geometry deter-
mined by the classical metric h,b, let us introduce a 1-
form m, which is slowly varying on the scale L and com-
pare the value Q[r0](h) of the classical Q[co] evaluated
at the metric h b, with the action of the quantum opera-
tor Q[r0] on (h~. A detailed calculation yields

(5( Q[m] = ——Q[ ](b)+0 — (6(. (10)
2 a L

Thus, (6) is an eigenstate of Q [co] and the corresponding
eigenvalue is closely related to Q[rv](h). However, even
to the leading order, the two are unequal unless the aver-
age distance a between the centers of loops equals
Jx/2'. More precisely, writing the leading coefficient as
4 (2na/Ip)nip we see that, to approximate h,b, 6 should

contain, on an average, one-fourth Planck length of curve
per Planck volume, where lengths and volumes are mea-
sured using h,b.

The situation is the same for the area operators Ag.
Let S be a 2-surface whose extrinsic curvature varies
slowly on a scale I »Ip. The state (A~ is an eigenvector
of As with eigenvalue equal [up to O(lp/As(h))] to the
area As(h) assigned to S by h, b when the mean separa-
tion a between loops satisfies precisely the condition stat-
ed above.

Thus, the requirement that (h~ should approximate the
classical metric h,b on large scales L tells us something
nontrivial about the short distanc-e structure of the mul-

tiloop 6: a is fixed to be 4x/2 times the Planck length.
Now, naively, one might have expected that the best ap-
proximation to the classical metric would occur in the
continuum limit in which the separation a between loops
goes to zero. However, this limit is inappropriate be-
cause, as a tends to zero, the eigenvalues of Q [co] and As
actually diverge. The reason is that the factors of the
Planck length in (6) and (9) force each loop in the weave
to contribute a Planck unit to the two geometrical observ-
ables. Next, note the structure of the argument: We be-
ing with a classical metric, use it to define the scale L, the
notion of "slowly varying,

" as well as the structure of 6,
and find that the mean separation a between the loops is
forced to be 42xlp, as measured by h,b.

Finally, the above construction can be extended [7] to
curved metrics which are slowly varying with respect to
the flat metric h,b, used above: Given a slowly varying
tensor field t, , the metric q,b =t, 'tb h,d can be approxi-
mated by a weave 5& constructed by "deforming" h, using

b

We conclude with three remarks.
(1) The weave 6 approximates h,b only when we use

smearing fields ro, (and 2-surfaces S) which are slowly
varying with respect to h, t, . Therefore, in principle it is
possible that the same weave h, can approximate another
metric, b,'b, which fails to be slowly varying with respect
to h,b and therefore defines a distinct class of smearing
fields, which are now slowly varying with respect to h,'b.
Whether this can occur is being investigated. In any
case, it is clear that h, will not approximate h,'b if h,'b is
slowly varying with respect to h b.

(2) The relation between the exact theory and the
linearized theory is being investigated [14]. There are
preliminary indications that it is possible to reconstruct
the (low frequency) graviton states [15] from the states
of the exact theory which are "near" (6(. In this connec-
tion, note also that, as it is an eigenstate of the metric,

239



VOLUME 69, NUMBER 2 PH YSICAL REVI EW LETTERS 13 JULY 1992

(Ai is not a candidate for the "vacuum" of the theory.
However, candidates for the vacuum may be constructed
by dressing (Ai with an appropriate distribution of loops
corresponding to the virtual gravitons.

(3) The main results presented in this Letter can be
obtained also in the connection representation [2,5, 161, in

which case the weave state is represented by the function-
al +&[A] =TrPexp(GfqA, dh'). Thus, it is the loop
operators (rather than the loop states) that are essential
to the argument; they provide us with a regularization
procedure that respects diffeomorphism invariance.
However, for a nonperturbative treatment of dynamics—i.e., for constructing physical states which are annihi-

lated by the constraints —the use of the loop representa-
tion seems unavoidable since, at present, solutions to all

quantum constraints are known only in this representa-
tion. The relation between the knot classes, which arise
as solutions, and 3-geometries —i.e., diAeomorphism

equivalence classes of 3-metrics —is being investigated.
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