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Measurements at 0' of Negatively Charged Particles and Antinuclei Produced in Collision
of 14.6A GeVlc Si on Al, Cu, and Au Targets
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We report measurements of d, P, K, and tt produced at 0' in collisions of 14.6A GeV/c ~sSi on Al,
Cu, and Au targets. A beam-line focusing spectrometer was used to identify particles at rigidities from
—2 to —8 GV. The ratio of d/p invariant cross sections at midrapidity (y=l.7) is (1+'0.7)&10
larger than expected from a calculation of dd direct production but smaller than predicted by a simple
coalescence model. We also report limits on the production of exotic particles.

PACS numbers: 25.75.+r

The yield of antinucleons and antinuclei from nucleus-
nucleus collisions is regarded as a sensitive probe of the
space-time evolution of the interactions [1]. We have

performed an experiment to measure p and d production
in 14.6A GeV/c Si+A collisions at the Brookhaven Na-
tional Laboratory Alternating Gradient Synchrotron
(AGS) using a two-segment focusing beam-line spec-
trometer to measure long-lived (r ) 10 ns), negatively
charged particles produced at O'. We report here cross
sections of tr, K, P, and d, and we discuss limits on the
production of new, stable, negatively charged high-mass
particles, such as strangelets [2].

Although the production of d's has previously been
measured in p+p and p+A collisions at higher energies
[3,4], this observation of d's is the first reported for AA
collisions. In high-energy collisions, at least two models
can be imagined for the formation of antideuterons. The
first is direct production through a process such as NN

NNdd. The momentum threshold for this reaction is

15.9 GeV/c in a fixed-target experiment, higher than the
AGS beam momentum per nucleon. The second model is

through the coalescence of p 's and n 's created in

separate elementary processes. The coalescence picture
has been used, with great success, to describe the spectra
of deuterons, tritons, and other light nuclei emitted in

medium-energy AA collisions [5]. It has also been used
to describe the production of light nuclei in 14.6A GeV/c
AA collisions [6] and the production of light antinuclei
(d, t, and He) in high-energy pp and pA collisions [4].
In this Letter we compare our data to simple calculations
using both these models.
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FIG. 1. Experimental layout showing the beam-line spec-
trometer. The time-of-Aight counters consisted of 5-mm-thick
scintillator viewed at both ends by photomultiplier tubes. The
3-atm-gas Freon-12 Cerenkov detectors were used to veto x 's

in the trigger as well as in supplementing particle identification
capabilities at high and low momentum. The four drift-tube ar-
rays provided acceptance and particle trajectory information.

One of the intriguing features of heavy-ion collisions in

the AGS energy domain is a copious production of
strange particles, K+ and possibly A [7]. In this environ-
ment, the formation of a new form of strange matter
[2,8] or multistrangeness hypernuclei [91 may be possible.
Simultaneous with sampling the momentum range over
which we expect p and d production to peak, we produced
a data set which also allows us to place significant limits
on production of new stable particles over the range of
mass-to-charge ratio from —

1 to —7.
The experimental layout is shown schematically in Fig.

1. The beam was incident on the AGS "A" primary sta-
tion at intensities up to 10 s ' over a 1-s spill on targets
of Al, Cu, and Au each having a thickness between 3%
and 30% of a Si+A interaction length (A,;). A portion of
the data was taken with a combination Au-Pb target with
a total thickness of 60%A,;. Two ionization chambers
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(IC) upstream of the target and a scintillator secondary-
particle telescope (SPT) served to monitor the beam
fluence. Secondaries emitted within h, A =200 psr around
0 and within ~ 3% of the tuned rigidity were transport-
ed through a 4' bend and brought to a focus (F 1) at a

collimator 30 m downstream. From Fl they were trans-
ported another 28 rn downstream through a —7' bend
and brought to a second focus (F2). To be open to as
wide a range of 2 and Z as possible, trigger conditions
were kept loose: A LOOSE trigger was defined as
the coincidence between either photomultiplier tube
(PMT) on TOFl and either PMT on TOF3, the scintil-
lators at the foci. A PIBAR trigger was defined as

LOOSE (CK1+CK2). All PIBAR events were record-
ed, while LOOSE triggers were prescaled by a factor of
100 before being recorded. The live time fraction for
data acquisition was typically ~ 85%. The LOOSE
trigger had a coincidence gate of 60 ns and was therefore
sensitive to any particle having an ~A/Z~ ratio of 7 or
less over most of the rigidity range scanned. We did not

observe any ~Z~ ) 1 particles. We did observe events in

which two n or z K were present, consistent with

combinatoric expectations.
Four multiplane drift-tube modules (DT) were used to

determine the trajectory of the particle in each recorded
event, and to distinguish those few events with two parti-
cles in the spectrometer. We were able to reconstruct val-

id trajectories for approximately 95% of the particles hav-

ing valid time-of-Ilight (TOF) signatures. This recon-
struction was used to verify the spectrometer's accep-
tance, and to verify on an event-by-event basis that each
particle had followed an allowed trajectory. The overall
spectrometer acceptance was arrived at through a com-
parison of the observed trajectories with the results of a

simulation which transported a white spectrum of mo-

menta and production angles through the system.
In counting z, K, and p's for cross-section deter-

mination, we required four valid TOF signals, and

identified the particle by a combination of TOF and the
presence or absence of a CK signal. In our search for
rare high-mass particles we additionally required TOF
consistency between the four independent measurements,
charge consistency in all counters, a single valid trajecto-
ry pointing to the target, and a single hit within the 60-ns
window. After these requirements were imposed no

events with a flight time greater than that of the p
remained in our sample except two d's at —6. 1 GV. The
resulting TOF spectrum for all particles at —6. 1 GV is

shown in Fig. 2. The mass resolution indicated here is 30
Mev/c in the p region.

The cross section for each species-momentum-target
combination was determined as
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where Np is the observed number of that species, N~~ is

the ion chamber count, C~~ is a constant such that
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A'~cC~g is the number of primaries on target, a is the
spectrometer acceptance [nominally (10 sr) SP/P],
pta„g, t is the density of target nuclei per unit area, ed„ay is

a correction to the z and K yields for decays in flight,

e„;„t is a correction for the reinteraction of secondaries
inside the target and along the spectrometer, g~;„, is the
live time fraction, g,g is the overall trigger-detection
eSciency (90%), and E and P are the energy and
momentum of that species at that rigidity. The uncer-
tainties in our measured cross sections are dominated by
a 20% systematic uncertainty in flux and acceptance
caused by variations in beam position on target.

Our total data sample over all rigidities contains ap-
proximately 5X106 z, 106 K, 3x105 p, and 2 d, not-

ing that the 7r sampling was prescaled by a factor of
100. Invariant cross sections for these particles are sum-
marized in Table I and in Fig. 3.

The AGS experiment E802 has measured spectra for
z, K [7], and p [10] at lower values of rapidity (y)
and at angles of ~ 5', a kinematic regime complementa-
ry to ours. Our observed invariant cross-section ratio
at p& =0 and y =3.2 is K /x =0.0028+'0.0007. The
ratio determined from E802 by extrapolating their
minimum-bias Si+Au data to p& =0 at y =1.3 is

0.01 ~0.003. Note that these are quite diflerent rapidity
regimes; our data are near the beam rapidity while E802
is below the c.m. rapidity. The p cross section from E802
at y =1.3 extrapolated to p~ =0 is 15 ~ 7 mb/GeV; this
is larger than our value of 4.64-1.1 mb/GeV at nearly
the same rapidity, y =1.25. The AGS experiment E814
has recently reported a p cross section at p & =0 of
6.5 ~ 1 mb/GeV, in reasonable agreement with our
value [11].

We have observed a d cross section at only one momen-
tum setting: Ed tT/d3P =(4~ 3) X10 mb/GeV at

TDC Channel
FIG. 2. Mass resolution from timing distributions showing

, K, and p peaks at 6. 1 GV rigidity. Note the prescaled z
spectrum. The width reflects the fact that these include the full

momentum bite of the spectrometer. The time-to-digital-
converter (TDC) sensitivity was 30 ps per channel.
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TABLE I. E858 invariant cross sections (mb/GeV ). Statistical errors are less than 3% on

all points except the d s. Systematic uncertainties in rigidity are 5%. Systematic uncertainties
in cross section of 20% apply in a comparison between cells in the table, but not within a cell.

Momentum P 1.5 2.2 2.9 3.7 4.5 5.8 6. 1 7.9

Si+Al
E
K
P 1.49

7410
80.6
2. 1 1

5090
83.3
2.40

3160
55.6
1.82

2850
46.2
1.74

1100
18.7
0.66

1200
21.5
0.76

Si+Cu
S
K

2.08

12400
1.06
3.66

8110
127
3.86

5100
81.1

3.13

4130
64.0
2.66

1740
26.5
1.23

1840
29.6
1.31

Si+Au
x
K

d
4.59

19 100
285
6.50

14600
276
7.67

9280
188
6.39

7150
134
5.25

2590
52.4
2.23

3010
53.4
2.52

0.00004

1000
19.0
1.10
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p =6. 1 GeV/c; here we compare this value with predictions from the two models mentioned in the introduction.

The first model is direct d creation through NN NNdd or NN NNNNd. Using the double-Gaussian functional

form for the Fermi momentum distribution, reported by
Ref. [12] to fit the backward particle production, we were
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I I I able to fit the d/p ratio data [13] measured in near-
threshold pA collisions at E„=19-70 GeV. Using the

Si+Au same Fermi momentum distribution for both Si and Au,

106 we then estimated the d/p ratio for the present subthresh-
old reaction. The calculated cross section due to this
direct process is 4X 10 mb/GeV at (P) =14.6 GeV/c,
2 orders of magnitude smaller than the observed cross

C9 section. This implies that direct dd production is not the0
7T dominant process for d production in these Si+Au col-

0 0 lisions.
s 8 The second model is coalescence [14]. In coalescence,

o K the probability of forming a d (d) is proportional to the
product of the probabilities of forming a p (p) and an n

100— 0 (n) (assumed equal). The simplest relativistic formula-
b P tion of this is
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FIG. 3. Particle distributions: Fd'cr/dp' for z, K, and P
from Al, Cu, and Au targets; the d prediction from the co-
alescence model calculation is shown as a solid line. The 90%-
C.L. upper limits to the invariant cross section for d's reflect
the number of interactions sampled at each rigidity; the two d's
are shown in the point at 6. 1 GV. To compute the number of
interactions sampled at each setting, multiply the upper limit
values by )0 ~p'/E assuming a deuteron mass particle.

' 2d'o
d P, d(d)

d'~=B E (2)
P p(p)

evaluated at the momentum Pp(p) =
z Pd(d). In a wide

variety of experiments the d/d spectra are well repro-
duced by (3) and the value of B consistently falls in or
near the range (1-2)X10 GeV [4,5]. Using a value
of 8 =1.5 x 10 GeV we can predict the expected d
spectrum based on our p cross sections; the result is plot-
ted as a line in Fig. 3. At P =6.1 GeV/c, the calculated
cross section is 4X 10 mb/GeV2 which is a factor of 10
larger than the measured cross section. Using our data
point at 6. 1 GeV/c as well as the upper limits quoted, we
find 8 ~ 1.5x 10 GeV at 90% C.L.

The coalescence model was used successfully for the in-
terpretation of deuteron production in 14.6A GeV/c Si
+Au collisions [6]. The constant B had a nominal value
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of (I-2)x IO GeV in a low-multiplicity sample, but
fell to as low as (0.15-0.30) && 10 for the highest-
multiplicity events. Formulations of the model using den-
sity matrix formalisms [15] or a thermal model frame-
work [16] indicate that B should depend on the size and

shape of the emission-source region. The recent relativis-
tic coalescence calculation [14] using an extended fireball
source calculated a d/P ratio of 6X 10, again appreci-
ably larger than our result. These facts, together with
our low d cross sections, suggest that the emission-source
region for p's (and hence d's) may be larger than that
for other particles, possibly reflecting a longer formation
(h ad ron ization) or fr eezeout time.

Our experiment provides new limits on the production
of negatively charged exotic particles with lifetime in ex-
cess of =10 ns. In the region of m & m- the stringent
analysis requirements described above removed all parti-
cles except for two d's at 6. 1 GeV/c. This fact sets the
limit for the existence of a new exotic particle, within the
framework of a production model based on exponential

p& and Gaussian rapidity distributions, to the sensitivity
level of a few 10 for low mass to a few 10 ' for large
mass [17]. This sensitivity level is equivalent to 20
mb/GeV .

We have measured the cross sections of negatively
charged particles at 0' in 14.6A GeV/c Si collisions
with Al, Cu, and Au targets. The d yield is smaller by a
factor of 10 than the prediction of a simple coalescence
model which otherwise works very well both for describ-
ing deuteron yields in the same reaction and for describ-
ing d yields in pA collisions at higher energies. The ob-
served d yield is larger by a factor of 100 than a predic-
tion of a simple direct process calculation. We found no
new particles in our experiment at the level above 20
nb/GeV for rigidities up to 8 GV and over the range of
mass-to-charge ratio from —

1 to —7.
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