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Construction of Inhomogeneous Universes Which Are Friedmann-Lemaitre-Robertson-Walker
on Average
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The understanding of our Universe is based on the working hypothesis that the homogeneous and iso-

tropic models give a successful description on a very large scale, despite the nonlinear inhomogeneity of
the matter distribution in the present Universe. We consider the compatibility problem between the
overall homogeneity and isotropy and the local inhomogeneity. A scheme to construct inhomogeneous
irrotational dust universes which are homogeneous and isotropic on average is shown in the framework of
general relativity; they represent "relativistic pancake solutions" analogous to those in Newtonian

cosmology.
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where =—6/Bt, ~
denotes the covariant derivative with

respect to g;~, R'j is the Ricci tensor of the three-
metric, R= R';, and u',-=—u'j is the deformation ten-
sor which describes the change of the relative position L'
between the world lines of neighboring "particles" (say,
galaxies) [51, X'=u'JX~. (u'j is also known as the extrin-
sic curvature of the t =const hypersurfaces. )

The remarkable isotropy of the cosmic microwave
background now strongly supports the idea that the
Universe is homogeneous and isotropic in some averaged
sense and well described by the Friedmann-Lemaitre-
Robertson-Walker (FLRW) models. The real Universe

is, however, neither homogeneous nor isotropic, and the
density contrast is larger than unity up to the scale of su-

perclusters. Although the FLRW models provide a suc-

cessful description of the averaged overall behavior, the
smoothing procedure, i.e., the transition from a locally

clumpy universe to an averaged FLRW universe, is still

not understood in detail [1], mainly because of the non-

linearity of the Einstein equations. The pioneering work

in understanding the smoothing process is due to Fu-
tamase [2-4]. In his approximation scheme the spatial
averaging is introduced to derive the averaged behavior of
the spacetime, but the ansatz for the metric is made such
that the deviations from the FLRW models are small. In

this Letter spatial averaging is also introduced, but we

shall proceed diA'erently to construct clumpy universes

whose overall behavior is FLRW-like on average.
We consider irrotational dust with density p and four-

velocity u". In comoving coordinates with u" = (1,0,0,0)
and go; =0, u„T"',=0 and the Einstein equations read

The standard (but a bit simplified) approach in obser-
vational cosmology may be described as follows: (a) Ob-
serve the distribution, the masses, and the velocities rela-
tive to us of neighboring galaxies; (b) calculate the aver-

aged quantities under the assumption that the relative ve-

locity field is isotropic on average (the Hubble law) and
the overall distribution is homogeneous; and (c) compare
these mean properties with those of the FLRW models
with the same density as that of the total mass of the
galaxies distributed uniformly in the observed region.
We would be happy if we could get the best-fit parame-
ters of the FLRW models in this way. The discrepancy
between the observational data and the properties of the
FLRW models, however, usually requires additional
matter contents besides that estimated from the visible

part of galaxies, such as dark matter or even a cosmologi-
cal constant ~

We will not discuss the observational aspects in detail,
but we shall follow this approach to describe the average
behavior of an inhomogeneous universe. In the co-
moving coordinate system that we took, Z„ the hypersur-
face t =const is orthogonal to the dust motion. The
FLRW models require that the matter distribution be

perfectly homogeneous on Z, . Therefore, a corresponding
mean (or "background") density for an inhomogeneous
universe is defined by

1

pb =(p)—= Iim, I2 3 &
p[det(gJ)]' d x,
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It is assumed that this limit exists. The scale factor a(t)
is defined by

pb+3(a/a) pb
—0

We define the peculiar deformation tensor V'j by

V'I ——u', —(a/a )6', ,

which represents the deviation from the uniform Hubble
expansion, and the density contrast A=—(p —pb)/p, which
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and Eq. (2) becomes

a SzG pb
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In the absence of inhomogeneities, this equation is sim-

plified to Friedmann's equation

a k

a a

It follows that our average quantities pb, a are compatible
with a Friedmann "background" model if and only if

is more convenient than the conventional definition
8—= (p —pb)/pb [see Eq. (13) and the discussions below].
Using these quantities, Eq. (1) turns into

(9)
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where Q=A(x, y, z)+p(x)h+(t)+p(x)h (t). The col-

lapse occurs in the x direction.
When the two-spaces t =const, x =const are of con-

stant curvature k, the exact solutions have been found by
Szekeres [15,16]. For presentation's sake, we shall give

the expression for k =0. (The general cases kAO can

also be treated in the same way. ) In this case, we can set

p(y, z) =1. The solutions for the density contrast are
hi(t) =t t, 5 (t) =t ' (see also Refs. [17-19]),and

A(x, y, z) =
9 p(x)(y +z )+cr(x)y+ v(x)z+co(x). By

a suitable transformation, one of the five functions of x,
say, co(x), can be normalized to 1. Therefore, the other
four arbitrary functions characterize the solution:

SnG 6 1(3) + k
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The left-hand side of Eq. (13) is familiar to cosmolo-

gists. Its vanishing governs 8 in linear perturbation
theory [6-9]. The solutions for b' are given in the litera-
ture [10]. Equations almost identical to Eqs. (9) and

(13) have been derived in Newtonian cosmology in the
context of extending the Zel'dovich-type approximation
(pancake solutions) [11-14]. (V'i correspond to the spa-
tial gradient of the peculiar velocity, v't. )

The close resemblance to the treatment in linear theory
leads us to consider the case

(V';) —V'J Vi) =2(kik2+X2X3+Xp, l) =0, (i4)

where X; (i =1,2, 3) are the eigenvalues of V'i. In this

case, h, obeys exactly the same equation as 8, and the

solution can be extrapolated from the result of the linear

perturbation theory [12,13]. A simple example is that

two eigenvalues, say, X2 and X3, vanish. Physically speak-

ing, this means that the collapse is (locally) one dimen-

sional, which is exactly the property of Zel'dovich's solu-

tion [11,13]. Therefore, the solution we are looking for

here is regarded as a "general relativistic pancake solu-

tion. " Let us consider the case that the metric is diago-
nal. Employing the growing and decaying mode solutions

6+(t) and A-(t), and taking the constraint Eq. (3) into

account, the metric can be written in the form

ds = —dt +a (t)[g dx +p (y, z)(dy +dz )], (15)

If this holds, Eq. (1) and the trace of Eq. (4) give

6+ 2 (a/a )h —4trGpsh = —(1 —6) [(V'; ) —V'J V;] .

(i 3)

The only property we shall assume for the functions is

that the mean values of p(x) and p(x) vanish, i.e., f(x)
—=fv,f'(x)dx =0 for f(x) =P(x) and p(x). This leads to

the interesting consequence that the average behavior of
the spacetime is FLRW-like:

8trG(p) =8trGpb =3(a/a)

(i9)

with a =t
We have not assumed that the deviations from a

FLRW model are small [2-4] to acquire the FLRW-like
behavior on average. It should also be noted that the rel-

ativistic extension of the pancake solution does not neces-

sarily require the axially symmetric form for the metric
[20]. Such restrictive assumptions might lead to the ex-

clusion of a variety of relevant solutions. The description
based on the deformation tensor can give another possi-

bility to obtain solutions to describe more realistic situa-
tions. Based on the solutions, it should also be possible to
formulate a relativistic version of the Zel dovich approxi-
mation, which has been used successfully to handle the
evolution of the large-scale structure in Newtonian

cosmology. A more detailed discussion will be published
elsewhere.
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