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It is shown that the currently studied "string-inspired" model for gravity on a line can be formulated
as a gauge-invariant theory based on the Poincare group with central extension —a formulation that
complements and simplifies Verlinde's construction based on the unextended Poincare group.

PACS numbers: 04.50.+h, 04.60.+n, 11.17.+y

Lineal gravities, i.e., Einstein-type theories in (1+1)-
dimensional space-time, provide a setting for studying
nonunderstood issues of gravitation. The simplifications
achieved by the drastic dimensional reduction are not de-
void of interest, provided dynamical equations are not
based on the Einstein tensor R„„——,

' g„„R,which vanishes

identically in two dimensions. Several years ago, a class
of theories based on the Riemann scalar R was proposed,
but even the simplest of these [1], in which scalar curva-
ture is equated to a cosmological constant A,

R —A=O,

requires an additional, nongeometrical field in an action
formulation: Equation (1) follows from the action

I, -„d'xd —g q(R —A), (2)

where g is an invariant world scalar, which acts as a
Lagrange multiplier enforcing (1). Of course, once the
additional scalar field has been introduced, one may con-
sider various generalizations and modifications of (1),(2)
with alternative dynamics for R and rl [2].

The model (1),(2) has two distinctive features. It can
be obtained by dimensional reduction from Einstein
theory in three space-time dimensions [1]. Moreover, of
particular interest for us here, it possesses a gauge-
theoretical formulation, given by several people [3]. To
this end one uses the de Sitter or anti-de Sitter group
with Lorentz generator J and translation generators P,
satisfying the SO(2, 1) algebra (for Aao),

F =f'P, +fJ= (De) 'P, + (dko ——,
' Ae'e, t,e )J, (6)

(De)'= de'+ e—'t, koe (7)

is gauge invariant when the Lagrange multiplier triplet

g~ is taken to transform by the coadjoint representation.
The equation obtained by varying g, allows evaluation of
the spin connection in terms of the zweibein,

ko e'(h, be""B„e„)/dete, (9)

and the equation that follows upon variation of g2 regains
(1). Finally it is noted that a nondegenerate Killing
metric is available because the relevant group is semisim-
ple for AWO.

Recently, Verlinde [4] as well as Callan, Giddings,
Harvey, and Strominger [5] have introduced a similar
model, which is "string inspired. " The action

I2 d x4 —g(rlR —A) (10)

differs from (2) in that the Lagrange multiplier is absent
from the cosmological constant [6]. The equation of
motion from varying g,

The three field strengths F"=(f',f) transform covari-
antly according to the three-dimensional adjoint repre-
sentation. Therefore the Lagrange density,

2

XI = g rl~F" =rl, (De)'+r12(dko —
4 Ae'e, t,e ),

0

n~ =(n"n2),

[P„J] e, Pb, [P„Ptp] = —
2 Aegb J. (3) R 0,

[The tangent-space indices (a,b, . . ) are ra. ised and
lowered with the flat-space metric tensor h, t, =diag(1,
—1) and e '=1.] In the usual way, the gauge connec-
tion 1-form A is expanded in terms of the generators,

g =e P, +coJ,

a„a„~-—,
' Ah„„.

(4) Thus

(12)

shows that the metric is flat, g„„h„„,while varying g„„
gives, with the help of (11),

where e„ is the zweibein and m„ is the spin connection.
The curvature 2-form

—2rl=M —A(x+ —xti+)(x —xe ), x —= (t ~x),

(5)

becomes with xg—and M being integration constants. Interest in
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the model derives from the above "black-hole" solution
[7] with mass M [in terms of the "physical" metric
g„„/(—2ri)] whose quantum mechanical analysis may
shed light on various quantum gravity puzzles [4,5,8].

Here we address the problem of a gauge theoretical
formulation for I2. A discussion has already been given

by Verlinde [4], based on the nonsemisimple Poincare
group, with the algebra

[P„J]=c, Pb, [P„Pb]=0, (14)

which is the A 0 contraction of (3). However, there
are various unexpected features in his formulation: The
transformation law for the Lagrange multipliers is an un-

familiar affine expression; the Lagrange density is not in-

variant but changes by a total derivative —see below.
After reviewing Verlinde's approach, we show that an in-
variant Lagrange density with a conventional coadjoint
transformation for the Lagrange multipliers can be given,
provided one uses a centrally extended Poincare algebra,
which is an unconventional contraction of (3).

Following Verlinde, the connection and curvature are
defined as in (4)-(7), but owing to the vanishing of the
momentum commutator, the curvature becomes the A =0
limit of (6):

The Lagrange density is now taken as

2

Xz = g ri~F" + ,' A—e'~.be'
A 0

= ri, (De ) '+ g2 dco+ 2 Ae'e, b e (22)

The equations of motion that follow from L2 are
equivalent to (11)-(13) (with ri2= —2ri). However, the
transformation properties of L2 under Poincare gauge
transformations are obscure. Following Verlinde, we can
check that the following infinitesimal rules for 8'qA,

~ga gb& aa ACab~ ~ g2 ga6 b~ (23)

the homogeneous part is a coadjoint transformation
(rT=riU), while the shift, proportional to A, is needed to
compensate for the gauge noninvariance of the cosmolog-
ical constant in (22), and X2 changes as

together with (18) change X2 by a total derivative. But
the aSne shift in Bg„proportional to A, is unfamiliar. In
the finite version of (23),

rig ~ rig (T/b AEbg8 )JK g,
(24)

g2 g2 g2 ga& b~ 2 ~|

F f'P, +fJ (De)'P, +droJ.

Infinitesimal gauge transformation rules,

(is) X2=X2+Ad(8'e, be + —,
' 8 ro ——,

' d8'b, b8b) .

(2s)

w =de+ [~,e],
where the gauge generator e,

8=8 P +aJ,
can be deduced from (14) and (16) to be

(i6)

(i7)

Upon integration the boundary contributions involving e
and co may be dropped with the hypothesis that the

dynamical variables vanish on the boundary. But because

gauge parameters need not vanish, the last term can sur-

vive, even though it is a total derivative:

be'= —aB'be + B'b8 ro+d8', bro da. (18) I2 I2 =I2 —A d x(det88'/&x") .
4 (26)

In finite form they read

e'~e'=(JK ')' (e +B 8'co+18 )
(i9)

All the awkward features of the above formulation
disappear if the gauge theory is based on a central exten-
sion of the Poincare algebra. We therefore postulate in-

stead of (3),(14)
a) co a)+ da,

~here At is a finite Lorentz transformation:
[P.,J]=~.'Pb, [P.,P, ] =~.b ,' iAI, — (27)

JK'b =6'b cosha+ e'b sinha . (20)

or

f' f' (~ ')'b(f +e „8'f), f f=f, (21a)

2

FA FA g (U
—l)A FB

B=O

The curvature triplet F" transforms according to the
three-dimensional adjoint representation of the Poincare

group, viz. , as in (19) but without the differentials:

thereby adding the central element I to the generators
and effecting a magneticlike modification of the transla-
tion algebra [9]. Consequently the connection and curva-

ture now become

A =e'Pa+coJ+a 2 iAI,

F=dA+3 =f'P, +fJ+g ,'iAI—
= (De)'P, +dro J+ (da+ ~ e'b, be ) —,

' iAI,

JK'b
U=

a gc
(2i b)

e =8'P, +aJ+p 2 i Al (29)

and the finite gauge transformations with gauge genera-
tor
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read

ea~ &~ (~ —l)a (eh+eh 8cro+d8b)

a) ri) =a)+da,

a a =a —8'e,be ——,
' 8 co+dP+ —,

' d8'e, b8

(30)

fa Ja —(~ —l)a (fb+ eh 8cf )

f-f=f,
g- g =g 8'e.b—f' —

2 8'f,
(31a)

or

The multiplet of curvatures transforms by the adjoint
representation of the extended group,

multiplier g3 provides one more equation of motion,

da+ 2 e cobe =0, (3S)

h,b 0 0

h~B = 0 0
, 0 —

1 0,
(36)

This allows construction of the invariant scalar

which can be always solved, at least locally, because the
second term is a closed 2-form.

The extended algebra, in the representation that we

are using, possesses a nonsingular Killing metric, h~B
=gcnU ~hcnU tt, which is unavailable without the ex-
tension:

3F~~F"= g (U t)~ Ftt
B 0

(3[b)

1
3

M — g noh" n2~ ~,B-O
(37)

~a gc 0
0 1 0

8ce d1[d 82/2

n~ =(n. , n2, n3), (32)

which obey the conventional coadjoint transformation
law,

3

nA nA gnBU A,
B 0

(33a)

or

na- na =(nb n3eb. 8')~'a,—

@2 g2 g2 ga& b~ 2 g3~

713 713 =93 ~

(33b)

Verlinde's affine transformations for g„g2 are now linear
in g3, which is invariant.

Of course the equations of motion for L2' are
equivalent to those for X2, because variation of a in (32)
gives

dg3=0. (34)

Therefore g3 is constant, set equal to A, in which case L2'
differs from L2 by the total derivative Ada; but it is the
presence of this term that renders L2' invariant in con-
trast to Xz. (Clearly the solution n3=0 gives an unex-
tended Poincare gauge theory with vanishing cosmologi-
cal constant. ) Note that varying the additional Lagrange

Note that in the above realization of the gauge action on
F, the extension is not visible; I is represented by 0.

An invariant Lagrange density is simply constructed
with an extended multiplet of Lagrange multipliers,

3
X2'= g n~F" =n, (De)'+ n2dto+ n3(da+ 2 e e be"),3=0

which is also constant by virtue of the equations of
motion and is interpreted as the black-hole mass [41.

In conclusion, we see that the class of lineal gravity
theories involving a nongeometric Lagrange multiplier
possesses two members that are distinguished from the
perspective of gauge invariance: the original model

(1),(2) based on the SO(2, 1) group and the string-
inspired model (10) based on the extended Poincare
group. The extended Poincare model involves an uncon-
ventional contraction of the SO(2, 1) model: Owing to
the well-known ambiguity of two-dimensional angular
momentum, in (3) one may replace J by J+sI/i and A

by A/s, and set s to infinity, thereby arriving at (27). Fi-
nally we recall that the de Sitter model (2),(8) can be ob-
tained by dimensional reduction of planar gravity; wheth-
er there exists a model in (2+ 1) dimensions that reduces
to the string-inspired lineal theory (10),(32) is under in-

vestigation.
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