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%'e consider the problem of thermally activated potential barrier crossing in the presence of fluctua-
tions of the barrier itself. For a piecewise linear barrier switching between two values as a Markov pro-
cess, exact and Monte Carlo results reveal a novel resonantlike phenomenon as a function of the barrier
fluctuation rate. For very slow variations the average crossing time is the average of the times required
to difluse over each of the barriers separately; for very fast variations the mean crossing time is that re-
quired to cross the average barrier. At intermediate rates the crossing is strongly correlated with the po-
tential variation and the escape rate exhibits a local maximum at a "resonant" fluctuation rate.

PACS numbers: 05.40.+j, 02.50.+s, 82.20.Mj

Ever since the pioneering work of Kramers [1], the
problem of diffusion over potential barriers has held a
central role in statistical physics, providing a microscopic
mechanism for the Arrhenius temperature dependence of
crossing rates [2]. Several variations of the basic model
have been introduced recently for the study of more com-
plex nonequilibrium systems, including diff'usion over a
barrier in the presence of a harmonic force [3] and
diffusion over a fluctuating barrier [4-7]. The hallmark
of the former situation is the phenomenon of "stochastic
resonance" where the signal-to-noise ratio of the system's
response to the applied harmonic force displays a local
maximum as a function of the diff'usion coefficient (or the
temperature). In this paper we report a novel resonant-
like behavior in the latter case of diffusion over a fluc-

tuating barrier. For very slow variations the average
crossing time is the average of the times required to
diffuse over each of the barriers, while for very fast varia-
tions the average crossing time is that required to cross
the average barrier. These limiting cases are in accord
with intuitive expectations. At intermediate rates, how-

ever, the crossing is strongly correlated with the potential
fluctuations and the escape rate exhibits a maximum at a
resonant fluctuation rate.

We study the problem of overdamped thermal activa-
tion in the presence of barrier fluctuations for a piecewise
linear potential barrier switching between two values as a
Markov process. We present both exact and Monte Car-
lo results for the mean first-passage time (MFPT) of the
diffusion process which display a local minimum, signal-
ing resonant activated barrier crossing, as a function of
the barrier fluctuation rate. Exact results for diffusion
over a (fixed) piecewise linear potential barrier have re-
cently been obtained [8], as have exact results for the
non-Markovian MFPT problem for processes driven by
the dichotomous Markov process [9], and by a dichoto-
mous Markov process coupled to a diffusion process [10].
Earlier studies of activation over fluctuating barriers were
restricted to limiting cases, i.e., slow [4] or fast [4,5] bar-
rier fluctuations, or small fluctuations (low temperature)
[6]. Not unexpectedly, the resonant activation phenom-
enon observed in the new exact results reported here is

(g(t)g(s)) =6(t —s) . (2)

In the above, V' denotes the derivative of the potential V

with respect to x, the particle mass and Boltzmann's con-
stant have been set to I, and time is measured in terms of
the friction coefficient (also set to I) [11]. The setup for
the model is shown in Fig. 1. We take the potential to be
fluctuating randomly between two configurations, V+(x)
and V-(x), as a Markov process —the potential remains

—L

FIG. 1. Setup for the problem. The center height of the tri-
angular potential barrier fluctuates between E+ and E —at rate
y'

absent in those approximate treatments.
The rest of this paper is organized as follows. We next

describe our model of activation over a fluctuating barrier
and indicate the modes of analysis that are brought to
bear in its study. Exact and Monte Carlo results are then
presented to both illustrate the resonant activation and
provide an understanding of the mechanism responsible
for this behavior. We conclude with a brief discussion of
our results, pointing out some open questions.

The (overdamped) state variable X(t) moves in the
fluctuating potential V(x, t) under the influence of a heat
bath at temperature T, so the state variable satisfies the
stochastic diff'erential equation

dL = —V'(X, t)+ 42T((t), (1)
dt

where g(t) appearing in the Langevin force term is a
Gaussian white noise process with
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in one state for an exponentially distributed random time
before switching to the other. That is, the probabilities
P~(t) that V(x, t) = V~(x) satisfy the master equation

P+

dh, P-,
P+

y
—

y P

The parameter y is the flipping rate of the barrier, and its
inverse is the average time that the barrier stays in one
configuration before switching to another. In the first-
passage problem that we consider the state variable starts
off at position L (the bottom of a well of the potentials)
with the barrier in the ~ state with probability 2, and is
absorbed at position 0 (the top of the potentials).

The problem as outlined above may be studied via

Monte Carlo simulation. Direct numerical solution of the
stochastic differential equation is carried out using well-
known methods [121, and first-passage times of the pro-
cess X(t) from L to 0 are collected for statistical analysis,
for example, for measurement of the mean first-passage
time (MFPT). We note that potential shapes more gen-
eral than piecewise linear potentials can also be simulat-
ed, but we restrict our attention to these simple shapes in

order to complement a purely numerical study with exact
theoretical results as described next.

The composite system, comprising both the state vari-
able and fiuctuating potential barrier, is described analyt-
ically by the joint probability density p~(x, t) that
X(t) =x and that the potential is in the ~ configuration.
This joint probability satisfies the coupled Fokker-Planck
equations

p+

t,p —,

—y+ ' V+ (x) + T
ax ax

—y+ V'—(x) + T ~
a, a

ax ax

1

p+

p— (4)

p~(x, 0) = —,
' b(x —L) (5)

The appropriate initial and boundary conditions for Eq.
(4) are All of the statistics of r can be computed from F(t), for

example, the MFPT is

and

p+ (x, t) i, -p =0.

V'~ (x)+T
x L

wL
F(t):=Prober ) tl = lp+(x, t)+p-(x, t)ldx.

For t ) 0 we impose refiecting boundary conditions (van-
ishing probability current) at the walls of the potentials:

a
' p~ (x,t) =0. (7)

The probability that the first-passage time r from L to 0
is greater than t is obtained from the solution to Eqs.
(4)-(7) according to

(r) = F(t)dt .Jp (9)

The general solution to Eqs. (4)-(7) for arbitrary po-
tentials V~ is not known, which is the reason for our
concentrating on the simple piecewise linear profiles as
shown in Fig. 1. Then the equations for p+. are linear
constant coefficient partial differential equations which
may be solved by standard methods. Even with this
simplification, the exact expression for the MFPT is gen-
erally quite complicated However, in the case where the
midpoint of the barrier Iluctuates between +'E (that is,
where E+ = —E =E) it is simple enough to summarize
analytically. Then the MFPT from L to 0 is, explicitly,

E yL'k
(r)V /L'=~ — (1-e')+ y

Tk E
——+W, (I e)——E E, yI. 'k

T Tk E
E (10a)

where

and

(2yL'/r)(~ e " k) ~E'/V'-—
2(Ek/T)(1+2yL T/E )t(2yL /T)coshk+E /T l)

(10b)

2yL 2T" T
(10c)

A plot of the dimensionless MFPT (r)T/L versus the dimensionless barrier Iluctuation rate yL /T is given in Fig. 2
for the parameter values E=ST, displaying the resonant activation phenomenon. For very slow barrier fluctuation
rates —significantly slower than the time required to cross the highest barrier —the MFPT approaches the average of
the MFPTs for the alternative barrier configurations:
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FIG. 2. MFPT vs barrier fluctuation rate for the parameter
values E+ = ~ 8T. Dashed lines indicate limiting values of the
MFPT for slow or fast variations.

FIG. 3. MFPT vs barrier fluctuation rate for the parameter
values E+ =8T and E —=0. Solid line: theoretical curve.
Discrete data: Monte Carlo simulations (20 error bars).
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configuration. This suggests that while the crossing event
is independent of the barrier configuration in either of the
two limiting cases (y 0 or y ee), it is strongly corre-
lated with the potential fluctuations at intermediate times
where the crossing takes place preferentially when the
barrier is in its lower configuration.

Another example is plotted in Fig. 3. Here the top of
the barrier fluctuates between E+ =8T and E —=0 The
theoretical curve (solid line) is the exact solution, al-

though a symbolic manipulation program was required to
perform all the algebra. The discrete data are from
Monte Carlo simulations [13]. The results of the symbol-
ic manipulation and the direct simulation are in excellent
agreement, serving as checks for each other's validity and
precision. The resonant activation behavior is again ap-
parent in Fig. 3.

The Monte Carlo simulations yield more information
about the activation process. In order to check the idea
that the resonance occurs when the crossing takes place
with the barrier most likely in the down position, we kept
track of the position of the barrier at the instant that the
state variable reached x =0. In Fig. 4 we plot the proba-
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FIG. 4. Probability that the barrier is in the down

configuration at the instant of crossing vs barrier fluctuation
rate, from Monte Carlo simulations with the same parameter
values as in Fig. 3. Solid line is a guide to the eye.

On the other hand, for barrier fluctuations fast compared
to the typical crossing time, the MFPT approaches that bility that the barrier is in the down configuration at the
required to cross the average barrier, (E) =E+/2+E /2: instant of crossing versus the dimensionless barrier fluc-

tuation rate for the same parameter values as in Fig. 3.
)T/L 2 . T +&Eh'T In the limits of very fast or very slow variations of the

rL iT-- (E) barrier's position, it is equally likely to be up or down at
the moment of crossing. In the neighborhood of the reso-

t intermediate times, however, the MFPT is less than
ither of thes 1' 'ts. The MFPT has a lo 1

' nant activation, when the time scale of the flipping is of
the order of the MFPT across the lower barrier, the

or a value of the barrier fluctuation rate on the order of
crossing occurs almost exclusively when the barrier is in

he inverse of the time required to cross in the "down"
the lower state.
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FIG. 5. Monte Carlo data (2o error bars) for the MFPT all
the way across the barrier vs the barrier fluctuation rate for the
parameters E+ ST and E — 0. Solid line is a guide to the
eye.

In Fig. 5 we plot Monte Carlo data for the MFPT all

the way across the barrier, i.e., from x=L to x= L, —
versus the barrier I]uctuation rate for the parameter
values F. + 8T and E =0. This confirms that the reso-
nant activation phenomenon is not an artifact of our com-

puting the time required to go only to the middle of the
interval [14].

There are a number of further studies suggested by the
results presented here. The phenoinenon we have ob-
served for these piecewise linear barriers reveals the phys-
ical mechanism of resonant activation over a fluctuating
barrier in a simple model system with the most funda-
mental type of I]uctuation. This raises the question of
both quantitative and qualitative effects of other potential
shapes and/or Iluctuation statistics. For example, is the
resonance narrowed in other models? Additionally, the
probability distribution of the first-passage time across
the barrier is of interest. Is there a qualitative difference
in the first-passage time distribution near, as opposed to
far from, the resonant activation? The motivation for
considering activation over fluctuating potential barriers
in Ref. [4] was to study models of relaxation in complex
many-body systems. The idea introduced there is that
the barrier to relaxation in a subsystem may be built up
from like subsystems with similar fluctuation dynamics.
To fully investigate these kinds of models one needs at
least to include a relationship between the barrier's fluc-
tuation time scale and the crossing time scale (in, say, a
self-consistent manner). Further investigation of these

problems is left to a future study.
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