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New Thermodynamic Bethe Ansatz Equations without Strings
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We present a computational framework not based on the string hypothesis for the thermodynamics of
statistical and quantum field theory models solvable by the Bethe ansatz. In the cases of the XXZ
Heisenberg chain and the sine-Gordon quantum field theory we derive a single nonlinear integral equa-

tion which determines the free energy (or ground-state scaling function). Our approach is very effective

at high temperature, and correctly reproduces the low-temperature central charge and the analytic

structure of the corrections.

PACS numbers: 05.30.—d, 03.70.+k, 75.10.Jm

where 0( y(1r (gapless regime). As is well known,

Hqgz is related to the diagonal-to-diagonal transfer ma-
trix TL(8) of the six-vertex model by

e-o
Hxxz+ O(8'), (2)

2J siny

where

TL(8) +12+34 +2L —12L+23+45 ' ' +2L I (3)

The computation of thermodynamical functions for in-

tegrable models started with the seminal works of Refs.
[1-3]. In Refs. [2,3] the free energy of the Heisenberg
spin chain is written in terms of the solution of an infinite
set of coupled nonlinear integral equations, derived on the
basis of the so-called "string hypothesis.

" The same stra-

tegy was followed in Ref. [4] for the sine-Gordon quan-
tum field theory (QFT). In this Letter we propose a
simpler way to solve the thermodynamics by means of a

single, rigorously derived, nonlinear integral equation.
We restrict our attention here to the XXZ spin chain and

to the sine-Gordon model, but the method can be applied
to a wide class of models solvable by the Bethe ansatz.

The XXZ Hamiltonian for a periodic chain with 2L
sites (generalization to other boundary conditions is pos-
sible) takes the form

2L

Hxxz JZ [&nrrri+1+&nrrn+1 cosy(rrn&ri+1+1)],

a= . , b= . , c=l.sin(y —8) sin8

siny
'

siny
'

We now study the thermodynamics in the framework

proposed in Ref. [51. Thus, setting PJsiny=P, from Eq.
(2) we read

e lim [TL(2P/N) l

so that the free energy per site can be written as

f(P) = ——lim lim InZLIv (2P/N), (5)1

PL — 2L rv-

where ZL1v(8)=Tr[TL(8)l is the six-vertex partition
function on a periodic diagonal lattice with LxN sites.
The two limits in Eq. (5) cannot be interchanged since
the degeneracy of TL, (0) 1, that is 22L, is strongly L
dependent. However, the crossing invariance of the six-
vertex R matrix implies that under a rotation by x/2 of
the entire lattice plus the substitution 8 y

—0, the nu-

merical value of the partition function does not change
(see, e.g., Ref. [6]). Therefore ZL1v(8) =ZNL(y —8) and

1 . 1f(p) = ——lim lim 1nZIvL(y 2p/N) . (6)—PL- 2Lw-
According to the well-known Bethe ansatz (BA) solution,
the largest eigenvalue AN'"(8) of Tv (8) is nondegenerate
when 8 y. Then the two limits in Eq. (6) commute
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and one finds [5] write

(7)—2Pf(P) = lim InA)v'"(y —2P/N) .
f(P) = lim Elv (P) —2N ln

2P N —~ stny
Combining Eq. (7) with the results of Ref. [7], we can

where

N

z (X) = y(k, P/N)+p(k, y P/N—) ——g (((k —Xp, y)
2,1r

W

E)v(P) =i g P(XJ+iy/2, y/2 P/N—) —(t)(k, —iy/2, y/2 —P/N), p(k, x) =i—ln . [&(O,x) =0].
s in h (ix —

1(,)
The real numbers X~, . . . , X~ are the roots of the ground-state BA equations,

z, (X, ) =j —(N+ i)/2,
written in terms of the so-called counting function [8]

(9)

(io)

Our aim is to derive an integral equation for z)v(X).
Assuming that the root distribution becomes the continuous density o, (k) (normalized to I) for large N would lead to

the following linear integral equation:
+

2)ro, (k) =y'(X, P/N)+(i)'(X, y P/N) —— dp (('(X —p, y)(r, (p),
with the explicit solution

(i 2)

(i 3)n, (A. ) =z,'(X), z, (k) =—arctan
1 sinh ()rX/y)

sin(nP/yN)

Roots ~Xi~ & O(VP/N ) have a spacing of order larger than O(l/N) and cannot be described by densities. Therefore,
contrary to the usual situation [8], we must go beyond the density description to obtain a bulk quantity like the free en-

ergy per site.
Through simple manipulations we find from Eqs. (11) and (12) [9]

8+oo N

zjv(k) =z~(A, ) dpp(k p) —g 6(p k&) z/y(p)

where
"+ dk

( ),&~ ( )
sinh[()r/2 —y)k]

2z '
2 sinh [(z—y) k/2] cosh(yk/2)

The right-hand side of Eq. (14) can be expressed as a contour integral encircling the real axis, that is,

p+oo
l 1

zjv(k) =z (1(.)+ dpp(k p)z/v(p) z
.
N (,o)

+ z,.N ( +,.())

(i4)

(IS)

(i8)

namely,

(zo)

where we used Eq. (10). Integrating Eq. (16) now yields

a~(X) "+" I+a)v(p+i 0)
In =„dpp(k —p) ln (i7)

ac(~) " I+ajv(p+io)
which is the sought nonlinear integral equation written in terms of ajv =exp(2ziNzjv) [similarly a, =exp(2niNz, )]. No-
tice that ajv(k) = I/a~(1t, ). We evaluate the sum in Eq. (9) by a similar procedure, with the result

~ (p) E (p) E (p)
I '+

d~
sinh()rl/y) cos(xp/yN) I+ajv(~+io)

cosh(2nk/y) —cos(2rcP/yN ) I + ajv (X+i 0)
where E,(P) is that part of the energy that follows from the root density (13), that is,

2N
t'+ dk sinh[(x —y)k] sinh[(y —2P/N)k]

sinh(zk) cosh(yk)

If Eqs. (17) and (18) are analytically continued to the
~axis Imi(, = ~ y/2 they assume the same structure as

those derived in Ref. [10] by diA'erent methods.
Inserting Eqs. (18) and (19) into Eq. (8) yields Exxz(y) =2J cosy —siny„dk

sinh(xk ) cosh(yk )
/j =Exxz y +

where Exxz(y) is the ground-state energy per site of (1), (2i)
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while L(P) is the N cxI limit of (18), that is,

'+" In[I+a(Z+io)]
L = Im

ysinhb(k+ i0)/y]

Finally, a(A, ) —=a (k) satisfies

—iina(A. ) =- 21r

y sinh (H, /y)

(22)

+2 dpp(X —p) Imln[1+a(p+i0)].
(23)

Thus the calculation of the free energy has been reduced
to the problem of solving the single nonlinear integral
equation (23) and then evaluating the integral (22).

It is possible to rewrite Eq. (23) in the alternative form
~+oo

z(X) =Pq(A, )+
z Im& dPP'(X —P, y)

&&lncos[zz(p+i0)], (24)
where

q (k) =— —cothX, (25)
I sinh(2A. )
x cosh 2X —cos 2y

and z(X) =—(I/2xi) Ina(X) is related to the original count-
ing function,

z(A, ) lim N[z~(A, ) —
& sgnX] (A, real) .

Q~ oo

By the residue theorem we then obtain

z(X) =pq(1t, ) — g [p(X —
&, , y) —p(k, y)], (27)

2s j+7

(26)

where the real numbers (J, defined by z((J) =j—~,
j C Z, can be identified with the N ~ limit of the origi-
nal BA roots ki, Az, . . . , Ajv. The new algebraic BA equa-
tions z(gj) j—

—,
'

embody all the information about the

b4(X) = 1 1

6x 3
y"(a, y) y""(a, y) .

y
'

144m

Then, from Eqs. (20) and (22),

f(p) = —p
' ln2+ Jcos y

—pJ ( I + —, cos y)

+P J cosy+0(P ), (30)

which indeed agrees with the high-T expansion [2]. We
want to remark that Eq. (24) generates the functions
bk(A. ) recursively, with easy integrations which involve

only delta functions and derivatives thereof. It is indeed
a very efficient way to recover the high-temperature ex-
pansion from the BA solution [11].

We shall consider now the low-temperature regime.
When P» I Eqs. (23) and (24) indicate that z (A, )
-Pq(X), implying that L(P)-O(P '). The higher-
order corrections come from values of A, larger than
(y/x) lnp, where the assumption Ina-O(p) does not hold

anymore. It is convenient to introduce the new function
A (x) =a [x+ (y/x) ln (4'/y) ], in terms of which we

have, in the P ~ limit,

g+oo
L(P) = „dxe "i"Imln[I+A(x+i0)], (31)

xp"

XXZ thermodynamics. Equation (27) shows that z(A, )
has periodicity ix and has, as unique singularity on the
real axis, a simple pole at the origin with residue —p/x.

Let us now study f(p) for high temperatures. We set

z(&) = g P"b&(7), (28)
k 1

which inserted in Eq. (24) yields, up to fourth order in p,
bl(k) =q(k), bp(A) =(I/4 )y"(X,y), bi(X) =0,

(29)

i lnA (x—) = —e '"i"+2J dy p(x —y) Im In[1+A (y+i0)] .

i( ) "d ln(l+u) 1nu
&O u 1+u

To prove the lemma we consider the relation

Px2 d dl(Fi) —l(Fq) = dx In[I +F(x)] InF(x) —InF(x) In[1+F(x)] ~,
4 XI dx dx

I

To calculate the integral (31), we can use the lemma.
Lemma. —Assume that F(x) satisfies

+x2
i lnF(x) p(x—)+ dyp(x —y) Imln[1+F(y+i0)],

where p(x) is real for real x. Then
i'x2

Im „dxy'(x) ln[1+F(x+i0)] —,
' Im[y(xq) in(I+Fz) —p(xi)ln(I+Fi)]+ —,

' Re[1(F|)—l(Fq)],
where F 1 q =F(x 1 z) and i is a dilogarithm function,

(32)

(33)

(34)

(3S)

= —(y/~) i(l ) = —~y/6.
2315

and then use Eq. (33) and its derivative to substitute
lnF(x) and dlnF(x)/dx. After a little algebra this yields A(xi) =0, A(xz) =I, and
Eq. (34) (related identities were used in Ref. [10]). p + oo

The integral in Eq. (31) may now be exactly calcu- 21m~ dxe ""i"In[1+A(x+i0)]
lated by invoking the lemma with F(x) =A (x),
= —exp( —xx/ y), and x 1

= —~, xq =+~. We have
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Then the free energy for low temperature reads

f(P) =E~xz(y) —(y/6Jsiny)P +o(P ),
in perfect agreement with Refs. [2,5, 12]. The quantita-
tive determination of the o(p ) terms is more involved.

Qualitatively, however, it is rather easy to establish, from
the asymptotic behavior of the kernel p(X —p) in Eq.
(23) and from the irr periodicity implied by Eq. (27), that
these higher-order terms must be integer powers of T '
and T"~'

+ + oo

EN (L) —E, (L) = Im
yL J —oo (37)

Let us now consider the problem of calculating the
(properly subtracted) ground-state energy E(L) of 2D in-

36 tegrable massive models of QFT in a finite 1-volume L
In the context of perturbed conformal field theory, E(L)
is known as the ground-state scaling function. On the
other hand, by the Euclidean symmetry of the functional
integral, L E(L) is just the free energy density at tem-

perature T =L '. We use the lattice regularization pro-
vided by the light-cone approach [7]. For the six-vertex
model, the ground-state energy, on a ring of length L
formed by N sites, takes a form similar to Eq. (18):

dX sech —(k —8) —sech —(7 +8) ]n[1+ajv(X+i0)],

where

E,(L) =
L

y(7.+ 28, y/»
y cosh(zk, /y)

(38)

and ajv(X+i0) obeys an equation like (17) with the new

source term

—i ]na, (k) =2arctan sinh(zk/y)
cosh rc8 y

(39)

The L dependence in these expressions is hidden in the
light-cone parameter 8, which tends to infinity, in the
continuum limit N ~, as [7]

8 =(y/~) ln(4N/mL), (40)

with m, the physical mass scale, held fixed. Define now

e(k) = —lim [narv(y) /n) . (41)

+2„dp G(X —p) Imln[1+e '("+' )], (43)

where G(k) =(y/rr)p(yk/z). Thanks to the correspon-
dence between the light-cone six-vertex model and the
sine-Gordon (or massive Thirring) model [7], Eqs. (42)
and (43) give the ground-state scaling function E(L) of
the sine-Gordon field theory on a ring of length L (m
denotes fermion mass). This is a rigorous and simpler al-
ternative to the standard thermodynamic Bethe ansatz
[4, 13]. Notice that all UV-divergent terms are contained
in E,(L) [cf. Eq. (38)]. E,(L) also contains the finite,
scaling part m Lcotrr /2y (also found in Ref. [14] by
completely different means), which gives the ground-state
energy density in the L ~ limit.

For small values of mL the calculation closely parallels
that for low T in the thermodynamics of the XXZ chain.
Shifting k J[t.

—lnmL and applying the lemma leads to

2316

Then from Eqs. (17) and (42)-(45) we find

E(L)= lim [E (L) —E, (L)]
Q~ oo

+ dk= —m sinhlImln[1+e ' "+' ] (42)

and

e()1.) = mL sinh)1,

ML 0

E(I.) = ~/6L+ —O(1), (44)
showing the expected value c= 1 for the UV central
charge. The large-mL regime easily follows from Eq.
(43) by iteration. One finds the behavior typical of a
massive quantum field theory,

E(I.) = — rC, (mL)+O(e "'), -
(45)

with K~(z) the modified Bessel function of order 1. This
nonanalytic behavior in T=L corresponds to the soli-
tons contribution in the sine-Gordon language.

We would like to remark once more that, contrary to
the traditional thermal Bethe ansatz [2-4], our approach
does not rely on the string hypothesis for the structure of
the roots of the BA equations. This makes our approach
definitely simpler. Most notably, the whole construction
of the thermodynamics no longer depends on whether y/n
is a rational or not, unlike the stringy approach. Further-
more, it should be stressed that Eqs. (42) and (43) are
valid at the full quantum level. In this respect, it would
be interesting, in further developments, to compare them
to similar equations previously derived in the classical
and semiclassical limits [15].
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