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We present a recursive procedure to calculate the parameters of the recently introduced multicanoni-

cal ensemble and explore the approach for spin glasses. Temperature dependence of the energy, the en-

tropy, and other physical quantities are easily calculable and we report results for the zero-temperature
limit. Our data provide evidence that the large L increase of the ergodicity time is greatly improved.
The multicanonical ensemble seems to open new horizons for simulations of spin glasses and other sys-

tems which have to cope with conflicting constraints.

PACS numbers: 75.10.Nr

The theoretical understanding of spin glasses (for a re-

view, see Ref. [1]) has remained a great challenge. In

particular, the low-temperature limit leaves many open
questions about the eA'ects of disorder and frustration.
For instance, it has remained controversial whether
Parisi's [21 mean-field theory provides the appropriate
description for 3D spin glasses. The attractive alternative
is the droplet model [3], which in turn is equivalent to a
one-parameter scaling picture [4]. The simplest spin-

glass system to study such questions numerically is the
Edwards-Anderson model. In its Ising version it is de-

scribed by the Hamiltonian

H = QJijslsj,
tij )

where the sum goes over nearest neighbors and the ex-
change interactions J;~ =+ 1 between the spins s; =+1
are quenched random variables. In our investigation we

impose the constraint QJj =0 for each realization. Re-
cent simulations [5] of the 3D model in a magnetic field

support the mean-field picture. However, one may argue
that sufficiently low temperatures on sufficiently large
systems cannot be reached without destroying the ther-
modynamic equilibrium [6].

Low-temperature simulations of spin glasses su A'er

from a slowing down due to energy barriers. To illustrate
the problem, let us consider a simple ferromagnet: the
2D Ising model on a 50&50 lattice. In Fig. 1 we give its

magnetic probability density versus 13=T '. The two

distinct branches below the Curie temperature are associ-
ated with free-energy valleys in configuration space, each
of which defines a (pure) thermodynamic state. For low

enough temperature, spin-glass systems are supposed to
split oA into many thermodynamic states, separated by
similar tunneling barriers as the two pure states of the Is-
ing model. The physics of the barriers is far less under-
stood than in the ferromagnetic ease. As detailed finite-
size scaling (FSS) studies do not exist, it is unclear to us

to what extent these barriers depend on the system size,
whereas the temperature dependence has been investigat-
ed [1].

Most Monte Carlo (MC) simulations concentrate on

importance sampling for the canonical Gibbs ensemble (a

P, (E)-n (E)Ptt (E), (2)

where n(E) is the spectral density. In order of increasing
severity, the problems with canonical spin-glass simula-
tions are the following: (i) Simulations at many tempera-

1

FIG. 1. Ising model magnetic probability density from 50&50
lattice.

notable exception are microcanonical simulations, but for
the ergodicity problems on which we focus here they per-
form even worse than the canonical approach does). We
suggest that in a large class of situations, in particular
those where canonical simulations face severe ergodicity
problems, it is more efficient to reconstruct the Gibbs en-

semble from a simulation of a multicanonical ensemble
[7] than to simulate it directly. The multicanonical en-

semble is attractive for spin-glass investigations, because
equilibrium simulations of this ensemble allow us to over-
come low-temperature tunneling barriers by connecting
back to the high-temperature region.

In canonical simulations configurations are weighted
with the Boltzmann factor Ptt(E) =exp( PE). He—re E
is the energy of the system under consideration. The re-

sulting canonical probability density is
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PM (E) =exp[ P(E)—E+a(E)], (3)

where Ij(E) is determined such that for the chosen energy

tures are needed to get an overview of the system. (ii)
The normalization in Eq. (2) is lost. It is tedious to cal-
culate important physical quantities like the free energy
and the entropy. (iii) The low-temperature ergodicity
time r L diverges fast with lattice size (either exponential-

ly or with a high-power law). The relative weights of
pure states can only be estimated for small systems.

Let us choose an energy range E;„~E ~ E,„and
define for a given function Ij(E) the function a(E) by
a(E —4) =a(E)+ [P(E —4) P(E—)]E, a(Em, „)=0. The
multicanonical ensemble [7] is then defined by weight
factors

range the resulting multicanonical probability density is

approximately flat,

P „(E)=c „n(E)PM(E) =const.

In the present study we take E~,„=O [P(E)—=0 for
E ~ E,„] and E~;„=E the ground-state energy of the
considered spin-glass realization.

A multicanonical function P(E) can be obtained via re-
cursive MC calculations. One performs simulations

P (E), n =0, 1,2, . . . , which yield probability densities
P"(E) with medians E",q;». For E & E";„&E",d;,„ the
probability density P"(E) becomes unreliable due to
insufficient statistics, caused by the exponentially fast
falloff for decreasing E. We start off with n=0 and

t
P (E)—=0. The recursion from n to n + 1 reads

P"(E) for E ~ E",d;»,

P"+'(E) = P"(E)+0.25ln[P"(E+4)/P"(E)] for E",d;,„&E ~ E";„;
P"+'(E";„)for E & E";„.

(5)

Here the nth simulation may be constrained to E(Em~';, „by rejecting all proposals with energy E
& E",d';, „, but one has to be careful with such bounds in

order to maintain ergodicity. The recursion is stopped for
m with E;„'=E being the ground state. The actually
encountered average values for m were between m =2
(1.=4) and m =10 (L =48). For the larger lattices the
last recursion steps tend to get computationally intensive
and up to about 30% of the total CPU time was spent on
the recursion. Presently we are exploring more sophisti-
cated techniques which seem to allow considerable speed
ups and gains in stability.

Once the functions P(E) and a(E) are fixed, the multi-
canonical simulation exhibits a number of desirable
features:

(i) By reweighting with exp[ PE+P(E)E——a(E)]
the canonical expectation values

O(P) =Z(j) 'QO(E)n(E)exp( —PE), (6)
E

where Z(P) =+En(E)exp( PE) is the partitio—n func-
tion, can be reconstructed for all P in an entire range
P;„~P ~ P,„. Here P;„=P(E,„) and P,„=P(E;„)
follow from the requirement E,„~E(P) ~ E;„, and
E(P) is given by (6) with O(E) =E. With our choice
Em, „=0 and Em;„=E ground state, p~;„=0 and I8,„= follows.

(ii) The normalization constant c „ in Eq. (4) follows
from Z(0) =QFn(E) =2, where N is the total number
of spin variables. This gives the spectral density and al-
lows us to calculate the free energy as well as the entropy.

(iii) We conjecture that the slowing down of canonical
low-temperature spin-glass simulations becomes greatly
reduced. For the multicanonical ensemble it can be ar-
gued [7] that single spin updates cause a 1D random walk
behavior of the energy E. As E,„—E;„—V, one needs

V updating steps to cover the entire ensemble. For
first-order phase transition the observed slowing down

was only slightly worse than this optimal behavior.
As an exercise and to check our code on exact results,

we performed a multicanonical simulation of the 2D Ising
model with 0 ~ P & ~. We kept the time series of 4X 10
sweeps and measurements on a 50X 50 lattice and verified

that the finite lattice specific-heat results of Ferdinand
and Fisher [8] are well reproduced. No difficulties are
encountered with the multicanonical ensemble when

crossing the phase transition point. To explore the possi-
bility of zero-temperature entropy calculations, we used

Z(0) =2 as input and obtained 2.07+ 0.22 for the
number of ground states. Figure 1 is produced from the
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FIG. 2. Multicanonical energy density distribution for one

L =48 realization.
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simulation of this lattice.
After this test we turned to the 2D Edwards-Anderson

spin glass. We performed multicanonical simulations on
lattices of size L =4, 12, 24, and 48. Up to L =24 we in-

vestigated ten diAerent realizations per lattice and, due to
CPU time constraints, we considered only five realiza-
tions for the L =48 lattice. The multicanonical energy
distribution for one of our L =48 realizations is depicted
in Fig. 2. The falloA for —e &0 is like that of the canon-
ical distribution at P=0. For 0~ —e ( —e an impres-
sive flatness (about 800 energy entries on the lattice un-

der consideration) is quickly achieved by the recursion
(5). Close to the ground state some fluctuations are en-
countered on which we comment elsewhere [9]. They do
not pose problems as long as they can be kept within
reasonable limits of approximately 1 order of magnitude.
As it is not obvious from the scale of the figure, we would
like to remark that the ground state is not the state with
the lowest number of entries, but a state close to it.

Table I gives an overvie~ of some of our numerical re-
sults. To quantify our discussion of the slowing down, we

define the ergodicity time r~ as the average number of
sweeps needed to move the energy from E,,„ to E;„and
back. A sweep is defined by updating each spin on the
lattice once (in the average). For Pma„we take P(E ),
where it should be noted that due to our computational
procedure P(E) is a noisy function. The reported values
and their error bars are obtained by combining the results
from the difl'erent realizations, which enter with equal
weights. In Fig. 3 we plot the ergodicity time versus lat-
tice size L on a log-log scale. The data are consistent
with a straight-line fit (Q denotes the goodness of fit),
which gives the finite-size behavior

r L —L" sweeps .

In CPU time this corresponds to a slowing down
—V ' . The behavior (7) is by an extra volume factor
worse than the almost optimal performance we had hoped
for. The reasons will be considered elsewhere [9].

We estimate the infinite volume ground-state energy
and entropy from FSS fits of the form fL=f +c/V.
The entropy fit is depicted in Fig. 4, and the energy fit

looks similar. Our energy estimate is e = —1.394
+ 0.007, consistent with the previous MC estimate [10]
e = —1.407+ 0.008 as well as with the transfer matrix
result [11]e = —1.4024 ~ 0.0012. Our entropy estimate
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FIG. 3. Ergodicity times vs lattice size on a double log scale.
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s =0.081+0.004 is also consistent with the MC esti-
mate [10] s =0.071~0.007, but barely consistent with

the more accurate transfer matrix result [11] s
=0.0701 + 0.005.

It is not entirely straightforward to compare multi-
canonical and standard simulations. For instance, auto-
correlation times of multicanonical simulations come out
short due to the triviality that the simulation spends most
of its time at rather small effective P values. Our ergodi-
city time is a more useful quantity. Although the slowing
down (7) is severe, it seems to provide an important im-

provement when compared with the slowing down which
canonical simulations encounter for temperatures below
the bifurcation temperature. For L & 24 canonical simu-
lations [1,12] are unable to equilibrate the systems at the

P,„values reported in our table since the relaxation time
is by far too long. A rough estimate of the canonical er-
godicity time may be [I] r,'»»,„~-exp(CP —C') with C
and C'= 11.6. The scaling with L may then be hidden in

the L dependence of our P,„values, which is argued to
be divergent like Pm, „-ln(V), and this line of reasoning

TABLE I. Overview of some results. For the data points
marked with + the statistics for diA'erent realizations varies
somewhat and average values are given.
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FIG. 4. FSS estimate of the infinite volume entropy per spin.
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gives a slowing down of a canonical algorithm like V's.
With P,„=2.12 (our L =24 case) one gets a canonical
ergodicity time of order 10 —10 when the missing con-
stant is assumed to be of order 1, whereas our r24 is

about 2x10 .
When one is only interested in ground-state properties,

minimization algorithms have to be considered. As a
method, simulated annealing [13] stands out because of
its generality, although there are more efficient algo-
rithms for special cases, which should be used when ap-
propriate. In simulated annealing the results depend on
the cooling rate r = —dT/sweeps. For our model the be-
havior e(r) =e +cr'l with c=0.5 (/JT= —0.1 fixed) is

indicated [14]. To find a true ground state, one has to
reduce [e(r) —e ] to the order 1/V. Assuming that the
constant c is volume independent (only the lattice size
100x 100 was considered in [14]), this translates to num-

ber of sweeps —V =L, far worse than our Eq. (7).
This result is rather amazing as the multicanoncial en-
semble has eliminated directed cooling and is nevertheless
more efficient. If one does not insist on true ground states
one can then relax the condition [e(r) —e ] —1/V. For
instance, any behavior [e(r) —e ] 0 with L
would still give the correct density, and simulated anneal-

ing would slow down less dramatically. On the other
hand, this would also imply a less stringent multicanoni-
cal simulation.

A comparison with the cluster-replica MC algorithm
[10] is even less clear cut. The obtained estimates of the
ground-state energy and entropy are of an accuracy simi-

lar to ours. As one has to simulate many replicas at
many P values a direct comparison is impossible. Clearly,
the results reported on slowing down are more promising
than ours for the ergodicity time. However, it should be
stressed that the multicanonical ensemble is an ensemble
and not an algorithm. To try a combination with the
cluster-replica MC is an attractive idea.

Our results make clear that the multicanonical ap-
proach is certainly a relevant enrichment of the options
one has with respect to spin-glass simulations. The simi-
larities of spin glasses to other problems with conflicting
constraints [13] suggest that multicanonical simulations

may be of value for a wide range of investigations: op-
timization problems like the traveling salesman, neural
networks, protein folding, and others.
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