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Ferromagnetism in the Two-Dimensional t-J Model
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The occurrence of ferromagnetism for the t-J model on a square lattice is investigated using high-

temperature series for the Helmholtz free energy F and the uniform magnetic susceptibility go. For
J=O fourteenth-order series have been calculated for F and go and we estimate F(T=O) to find the
ground-state energy. A region of fully polarized ferromagnetism is found for J & 0. A ferrimagnetic re-

gion is observed for larger J/t where Zo is divergent, but F(T=0) is below that of spinless fermions.
Our results do not support Nagaoka's theorem at a thermodynamic density of holes.

PACS numbers: 75.10.Lp, 74.65.+n

Nagaoka's theorem [1] is one of the few known exact
results for strongly correlated fermions on a square lat-
tice. The theorem states that for the U=~ Hubbard
model, or equivalently the J=0 t-J model, on a bipartite
lattice with exactly one hole in an otherwise half-filled

band, the ground state is a fully polarized ferromagnet
(FPFM). However, the theorem does not address a finite

density of holes. To investigate Nagaoka's theorem in the
two-dimensional (2D) t-J model on a square lattice, Pu-

tikka, Luchini, and Rice [2] studied the low-temperature
behavior of the uniform magnetic susceptibility go. They
found a region in the phase diagram ~here go is divergent
at T=O, but it was not possible to determine whether or
not the ground state is a FPFM. In this paper we present
results from fourteenth-order high-temperature series for
the Helmholtz free energy F and go for J =0. Using the
series for F we estimate the ground-state energy Eo(n) as
a function of electron density n Com.parison to the
known FPFM (spinless fermions) ground-state energy
EFM(n) shows that FPFM is realized only for n=1.
Furthermore, by studying the ferromagnetic t -J model

(J (0) we are able to determine where FPFM occurs in

the phase diagram. These results show that between the
FPFM phase and the singlet region there is a ferrimag-
netic region, including the region of diverging go previ-

ously observed. The literature on ferromagnetism in

strongly correlated systems is vast, and we do not attempt
a complete review. The interested reader is referred to
the references and papers listed therein.

Eo(n) for J=0 is the minimum energy for the kinetic

part of the t -J Hamiltonian. In 1D this is independent of
the spin configuration [3] and is thus equal to Ep(n) for
FPFM. For J & 0 the FPFM state also minimizes the ex-
change energy; therefore in 1D for J & 0 the ground state
for all n is FPFM. For J~O the exact ground state of
the 1D t-J model is not rigorously known, but numerical
diagonalization results [4] give a Tomonaga-Luttinger
liquid ground state, not FPFM. In 2D, where no rigorous
results are known for Eo(n), we find for J =0 that Eo(n)
is below that of FPFM for 0 ( n & 1, implying that
Nagaoka's theorem does not hold for a thermodynamic
density of holes. It follows that for J &0 FPFM is not

the ground state of the t-J model for any n. For J &0
FPFM is more favored and we plot a curve for stability of
the FPFM state in the (J/t, n) phase diagram. Our main
conclusion is that FPFM is more difficult to obtain in the
2D t -J model than previous calculations have indicated.

Nagaoka's theorem has been extended to larger num-

bers of holes [5,61, but not to a thermodynamic density of
holes. Douqot and %en [7] have shown for J =0 and two
holes on a bipartite lattice that the FPFM state is not the
ground state for any dimension, in agreement with nu-

merical calculations [8] in 2D. Kanamori [9] showed
that for n(&1 the ground state for J=0 is paramagnetic
and recent variational calculations [10] have established
a rigorous critical density n, =0.71 below which FPFM is
unstable for the square lattice at J=0. Ferromagnetism
in the large-U Hubbard model has also been investigated

by using a Gutzwiller variational wave function [11-13]
and by spin-wave analysis [14]. Numerical calculations
on finite-size lattices [15] find for J&0 and 1

—n«1
numerous level crossings for states with diAerent total
spin and a marked sensitivity to boundary conditions.
The magnetic properties of the t-J model have also re-

cently been investigated by h'. gh-temperature series by
Singh and Glenister [16].

We generate the high-temperature expansion of the
thermodynamic potential fI(p, h) as a function of the
chemical potential p and an applied uniform magnetic
field h for the t-J model by the finite-cluster method [17].
The Hamiltonian of the t-J model in an applied uniform

magnetic field is

H = —t g (c;~, +H.c.)+Jg S;.SJ—

—gptth gS; —p gn;, (1)
l l

with the constraint of no doubly occupied sites. After
calculating O(p, h) we use the thermodynamic relations
N = — Qt)/r)pand M= —|IQ/t)h to find series for n and

m =M/pttlY at fixed p and h. Inverting these series al-

lows us to substitute n and m for p and h, obtaining
F(n, m, T) and g pttg/p=(l /n')a'F /mt)~ -o. Indepen-

dent checks on our series are given by the previous results
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FIG. 1. Plot of two different integral approximants used in

estimating Fo. Here n 0.80, and the solid curves are for
J/t 0 and the dashed curves are for J/t = —0.30. To extrapo-
late F to T 0 we include the physically reasonable require-
ments that the entropy S —BF/8T be a monotonic function of
Tand S Oat T 0. EFM at n 0.80 is also indicated.

FIG. 2. Differences in ground-state energies from EFM(n)
for 1=0. Data points with representative error bars: estimates
for T=O free energy; solid curve: least-squares fit to the data
points given by Eq. (2); short-dashed curve: free fermions;
long-dashed curve: Gutzwiller wave function.

of Kubo and Tada [18] for the U =~ Hubbard model,
the work of Baker, Eve, and Rushbrooke [19] on the
Heisenberg model and the well-known correspondence of
the FPFM state to noninteracting spinless fermions: Set-
ting m = I we recover the series expansion for the free en-

ergy of spinless fermions. We analyze our series by
means of integral and Pade approximants [17,20]. Fur-
ther details of the series calculation and our analysis will

be given in Ref. [21].
For the case J=0 we have a fourteenth-order series

which enables us to make better estimates for Ep. We
extended our previous tenth-order calculation [2] by
means of the clusters tabulated by Harris and Meir [22].
By using integral approximants we obtain a converged re-
sult for F(n, m, T) to temperatures of order Pt -5, except
for n=0. An example showing the convergence of the
integral approximants is given in Fig. 1. We compare our
estimates F(n, m =O, T=O) =Fp(n) for Ep(n) to EFM(n)
to determine the stability of the FPFM state for
0(n (1. The data are plotted in Fig. 2. The data
points are clearly below EFM(n) for most densities. For
low densities the Gutzwiller wave function [12], which is
also an upper bound for Ep, gives a better result than
EFM [see Eq. (3) below]. However, the estimated Fp(n)
is still lower, lying between the ground-state energy for
the Gutzwiller wave function EGw(n) and the ground-
state energy for free fermions. This indicates that a Jas-
trow factor is necessary to modify the Gutzwiller wave
function [13,23]. It has been noted [24] that the Gutz-
willer wave function should be a good trial wave function
near J/t =2.

If there is long-range order we expect a discontinuity
for some order of d Ep(n)/dn at the critical density n,
where Ep(n) would be nonanalytic. We see no kinks in

Fp(n) so there probably is not a first-order transition, but

there may be higher-order transitions which we are un-
able to address due to uncertainty in the data points. We
have calculated a least-squares fit of our data points by a
polynomial of the form

6

Fp(n ) =n (1 n) ——4+ g a;n'

p/t p—
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FIG. 3. T =0 chemical potential for J=0. Solid line:
derivative of Eq. (2) with respect to density; short-dashed line:
spinless fermions; long-dashed line: free fermions. Note that
the error in the solid curve is largest near half filling where it is

too low by 0.09. This provides an estimate of the error in our
result for po.

This fixes pp=p(T=O) at the end points, pp(n=0)
= —4 and pp(n 1) =4, which we know from Nagaoka's
theorem. The coefficients a; are a ~

= —1.0463, a2
=14.1120, a3 = —40.0637, a4 =60.4847, a = —53.7067,
and a6=20.3059. From the plot of Fp(n) in Fig. 2 we
see it is likely that Ep for the J=0 t-J model is less than
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EFM = —4nt+ 2xn t,
Eow= —4nt+( +tr2)n t —n J. (3)
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FIG. 4. Phase diagram for negative J/t The data points.
with representative error bars give the curve for stability of
FPFM while plain error bars denote the curve y =1. The ferri-
magnetic part of the phase diagram is the shaded region be-
tween these curves. The line is a guide for the eye.

EFM for all n. Our results are also consistent with known

upper and lower bounds for Ep [6,25]. From the least-
squares fit we can estimate Pp =8Fp/tin, plotted in Fig. 3.
From Pp and the original data points we see that Fp(n) is

asymmetric around n =0.5, with a minimum at n = 0.48.
This slight canting of Fp(n) favors FPFM for I —n (& I,
but does not seem to be sufficient to stabilize the FPFM
state away from half filling. In principle we could also
examine F0 as a function of m for fixed n to determine
the average magnetic moment, but as can be seen from
Fig. 2 the energy difference for m =0 and m =1 is small
and our current accuracy prevents us from obtaining use-
ful results.

For J &0 we have compared Fp(n) to EpM(n) to
determine where FPFM is stable in the phase diagram.
Our data are plotted in Fig. 4. At half filling we have the
ferromagnetic Heisenberg model, which is known to have
a FPFM ground state. Nagaoka's theorem also remains
valid for J & 0 since with only one hole flipping any spin
will increase the energy of the state. When J & 0 we see
that FPFM is more stable than for J=0, but for n &0.5 a
rather large value of iJ/ti is required. The curve for sta-
bility of the FPFM state we observe for J &0 is con-
sistent with our result at J=O, where we believe a ther-
modynamic density of holes destabilizes the FPFM state.

We expect there is a critical J, such that for J & J, we
have FPFM for all n For .J/t & —2 the difference be-
tween Fp(n) and EFM(n) is too sinall to be reliably deter-
mined with our current series. A simple estimate of J,
can be found by comparing low-density expansions
through O(n ) of EFM and Eow,

A diagrammatic method [26] was used to calculate Eow
Using this method the low-density expansion can be ob-
tained analytically. Setting EFM

=EGw we find

J, /t =2 —tr= —1.14. This value is larger than indi-
cated by our series results which give n, =0.12 at
J/t = —2. However, we expect Eow to give a larger re-
sult for J,/t because Eow is an upper bound for Ep. Thus
EFM will cross Eow before Ep and J, /t is an upper
bound for the true J,/t

Long-range ferromagnetic order at T=O should mani-
fest itself in a diverging gp as T 0. To investigate this
possibility we extend our previous analysis for J &0 in

Ref. [2] to J &0. We assume a power-law singularity of
the form go=A(pt)" in the limit T 0 and form the
biased logarithmic derivative,

(Pt) Ing, = ) .
d

d
(4)

We estimate y for T=0 by calculating diagonal Pade ap-
proximants for the resulting series. To estimate the range
of ferromagnetic behavior in the phase diagram we use
the criterion of Yedidia [27]. He chose the boundary of
ferromagnetism to be where the susceptibility is like free
spins, i.e. , y=l. The data points for y=1 are plotted in

Fig. 4.
The points for y =1 lie outside the region of the phase

diagram where FPFM is the ground state as determined

by ground-state energy comparisons. For a 2D FPFM we

expect gp to diverge exponentially [28] as T 0. If this
is the true behavior of g0, the logarithmic derivative cal-
culated above would still give a divergent result instead of
a constant. If we make J/t more negative at fixed n, y
does not become larger until the Pade approximants even-

tually have real poles at T & 0, similar to the behavior of
the series for the 2D Heisenberg ferromagnet. There is a
large region between the y=l points and the FPFM
phase indicated by the shading in Fig. 4. Since Fp(n)
(EFM(n) in this region we must have m (1, but we

have not determined the exact value of m. The value
y=1 is the same as for free spins and thus it is reasonable
to expect that states of different total spin are degenerate
on this line. It seems likely that this degeneracy is lifted
when y ) 1 and therefore rn ~0. We interpret this region
as ferrimagnetic. With our present series we cannot in-

vestigate the existence of more complicated spin order-
ings. A recent quantum Monte Carlo calculation [29] at
J =0 has obtained an estimate of the moment in agree-
ment with our results. As we go to more negative J/t the
curves for y = 1 and FPFM come very close together.
The error bars on the data points are currently too large
to distinguish the two curves for J/t ( —0.5.

For J~ 0 and 1
—n (( 1 we expect the t —J and Hub-

bard models to have similar behavior. However, J &0
does not correspond to U & 0, since in the t-J case we still
have the constraint of no double occupancy, while for
U & 0 in the Hubbard model double occupancy is
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favored. The parameter region expected to be most
favorable for FPFM in the Hubbard model is U/t»1
and 1

—n ((1. If this is true our results suggest FPFM in

the 2D Hubbard model occurs only for U= and n =1,
though there probably is a region of ferrimagnetism
around this point.

We have investigated ferromagnetism in the 2D t-J
model using high-temperature series for F and go. By
considering the parameter range J/t (0, we plot a curve
for stability of FPFM. This, along with our ground-state
energy estimates at J/t =0, suggests that the critical den-

sity for Nagaoka's theorem is n, =l instead of n, =0.71
as given by variational calculations. For slightly larger
J/t we expect ferrimagnetic behavior where Ep of the t J-
model is below that for a FPFM, but go is still divergent.
The nature of the spin ordering (if any) in this region is

not understood at present. Our results imply that the
FPFM state is the ground state of the 2D Hubbard model

only for n =1 and U=~.
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