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Susceptibility Singularities at First-Order Phase Transitions
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The bubble picture for pair-spin correlation functions is applied to two-dimensional Ising-like models,
at subcritical temperatures, in an external field A, from which we show, via the fluctuation sum, that the
susceptibility y(h) has an essential singularity at h=0. This is studied further using a solid-on-solid
bubble model for (a) a restricted ensemble corresponding to metastability, where A =0 is found to be the
limit point of an infinite number of poles of y along the negative real axis, and (b) an unrestricted en-

semble, where a Yang-Lee circle theorem is found.
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The droplet model of condensation, as well as a theory
of the critical point, received crucial impetus some years
ago: Andreev [1] and Fisher [2] used it to confirm
Mayer’s conjecture that the condensation point is a
mathematical singularity of a suitable free energy (in the
thermodynamic or infinite-volume limit), although a
weak one of essential type in the fugacity variable. At
that time it had already become clear, in the work of
Peierls [3) and then Onsager [4] on the planar Ising mod-
el free energy followed by that of Yang and Lee [5,6],
that a substantial theory of phase transitions could be
constructed based on partition functions without ad hoc
restrictions of the ensemble but with the essential require-
ments of the infinite-volume limit being clearly identified
[71.

The work of Andreev [1] and Fisher [2] focused atten-
tion on the heresy of van der Waals loops—the Maxwell
construction is needed to make a proper theory which
avoids a negative compressibility. Nevertheless, when
mean-field theory is formulated correctly (in one dimen-
sion) [8] it does indeed contain a Maxwell construction.
But there was still a misplaced desire to attribute sig-
nificance, even virtue, to loops as smooth extensions into a
metastable region, possibly requiring a phase restriction
in the ensemble of the partition function to do so. The
droplet singularity makes this impossible; any continua-
tion must be in the complex plane.

As a bonus, Fisher’s [2] work gave a derivation of some
scaling laws between critical exponents, even though the
excluded-volume interactions between different droplets
had to be neglected for technical reasons. The treatment
was also in a thermodynamic spirit—the correlation-
function fluctuation-sum route not followed. In this
Letter we reexamine a bubble model of correlation func-
tions [9,10] for the planar Ising and related models with
an external magnetic field. We obtain a new closed form
expression for the magnetic susceptibility and we use it to
extract a Yang-Lee circle theorem and the associated
density of zeros [6(b)]. We also examine the analog of
the droplet singularity [1,2] in this system.

Consider a planar Ising model with a bulk plus phase.
Throughout this paper we shall keep the temperature T

below its critical value T.. As has been explained else-
where, if we perform a coarse graining of the system on a
scale of the bulk correlation length [9], then the Peierls
contours [3] (or equivalently the low-temperature series
in the graphical representation of spin configurations)
contributing to the two-point correlation function reduce
asymptotically to a simple loop I' which passes through
the two points being correlated, (0,0) and (x,y); I' also
partitions the plane into regions of opposite magnetiza-
tion, the value of which is determined by the small con-
tours which are scaled away and the boundary condition.
The loop I' has a Boltzmann statistical weight with ener-
gy E (") where

BE()=1tL(C)+2mhA(T). 1

Here L(I') and A(T") are the length and area of the loop,
m is the magnetization outside I', 7 is the surface tension,
and h is the external field in units of k3T =1/B. The
magnetization m is usually assigned its spontaneous value
m* [5]; this should be valid for small enough & = 0, but
other choices will be considered below. Since T < T,
h =0 defines the first-order phase boundary. The trun-
cated pair-spin correlation function is then

uz(x,y)=m2;exp[—ﬂE(l")], )

where the sum is over all loops passing through (0,0) and
(x,y). The susceptibility, y(h)=dm/dh, is determined
from the fluctuation sum,

)= X Y uxx,y). 3)
X ™= —oo y== —oco
The kth derivative of u, with respect to 4 can be ex-
pressed in terms of moments of A(I"):

akuz
an*
assuming that m=m™* (independent of #=0). Here,
(- -+ ) denotes the ensemble average with respect to the
Boltzmann distribution given from (1). From convexity

inequalities, we have (4%)><(A4)* For large r=(x?
+y2)12 and h=0, u, takes the Kadanoff-Wu form

=(=2m*)XA* (T )u,y(x,y) 4)
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uz~e ~2/r? [11]. Random-walk ideas imply that the
mean bubble shapes are elliptical when 2=0 [10] giving
(A)~r*2 for large r. Hence, from (3) and (4), it follows
that

k
9k 2¢ym*
(-nkZZ >co| ——= | I'Gk/2), (5
ahk h=0+ co [ (21)3/2 /

where ¢o and c¢; are positive and independent of k and
['(z) is the gamma function. This implies that the Taylor
expansion about h=0 has a zero radius of convergence
and therefore that =0 is a nonanalytic point of y(h).
Below, we shall investigate the detailed nature of this
singular point by considering specific implementations of
the bubble picture. For the nearest-neighbor planar Ising
model, Isakov [12] proved that the right-hand side of (5)
diverges with k as (k!)2, for sufficiently low tempera-
tures. This result was previously anticipated by low-
temperature series expansions [13]. We therefore suspect
that the convexity inequality used above is rather weak.
For the bubble model, general arguments [14] imply that
x(h) is analytic for all Re(mh) > 0. In this case, the
gamma function in (5) would be replaced by I'(k) since
here {A4)~r for large r because the field would tend to
pull opposite sides of the bubble together [10].

To evaluate (2) the configurations of the bubble are
simplified by making the solid-on-solid restriction with
respect to the (1,0) direction. We perform a coarse
graining on a grid /x/ with x =N/, y =M, and require
that the bubble intersect each vertical line x =/ (=0,
1,..., N) just twice, with intercepts y;” and y;* satisfy-
ing y;~ = ;<. Then

N
BE(M)=E > +E<+2mhl Y (y7 —y;) (6)
j=0
with
N
E> =13 oG -y 7
j=1

and ®(») =(2+y?) 2. Assuming / is large enough— we
expect it to be proportional to the bulk correlation
length—so that y/! is typically small, a quadratic ap-
proximation to ®(y) gives a transfer-integral problem for
evaluation of (2) which can be separated by going to
center-of-mass and relative coordinates. The former
gives an elementary, field-independent problem. For the
latter, a further simplification is needed: Take ®(y) =a
+b|y|. The parameters a, b, and [ (we expect and
confirm that / is proportional to the bulk correlation
length &) are then chosen by fitting the 2 =0 result to the
exact two-fermion sector contribution to w,(x,y). The
solution of the A > 0 problem is given elsewhere [9,14]:

2N
2 e (iMw)do <« | ¢

NI M) =2 ©xp =1,

ua( ) leamf—w (+2 BN & |y,

(®
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where a=21t%/mh, | 7' =231 ¢ =exp(—2 %), and v,
are solutions of J,—(av;) =0 with J,(z) being the Bessel
function of order @ in standard notation. Note that «
is a scaling variable and its dependence on A through
mh is important. For large x, wu»(x,0)~hx "'
X ;"=|exp(-mjx) so that it has a “‘mass” spectrum
given by m; =27 (1+2%3Inv)).

Some remarks are in order.

(i) The bubble can be described by a functional in-
tegral [14]; the occurrence of Airy functions is natural
because the associated Schrodinger equation [in the
quadratic approximation to ®(y)] has a linear potential.
This approach agrees with (8) in the a— o limit and the
masses also agree with McCoy and Wu [15]. The prob-
lems with the functional-integral approach are the lack of
convergence of the fluctuation sum of u,(x,y) without a
cutoff (which then occurs explicitly in the susceptibility)
and the implied requirement to take /— O which is un-
physical.

(i) If u,(x,y) is written as a dispersion series from the
exact solution (in fermions) [16] the leading term to con-
tribute is the two-particle one. For (x2+p2)V2>¢ it
bounds the series sum so closely that the critical ampli-
tude of the susceptibility [17] is given to better than 1%.
Examination of the excess-energy-density distribution in
the two-particle sector agrees with the bubble picture
[14].

(iii) A realization of the Weeks columnar picture [18]
allows the construction of ®(y) from first principles
[14,19] and gives the weighting of the integration vari-
ables a priori.

(iv) As stated above, we choose a, b, and the coarse-
graining length / to get u,(x,0) for the bubble picture to
agree exactly with the asymptotic behavior of the Ising
two-fermion sector result as |x|— oo. This agreement is
not related to the exact reproduction of the Ising model
surface tension by the solid-on-solid model; in that case,
I=1 and ra=tb=2pJ where J is the spin-spin interac-
tion energy in the Ising model, whereas ours has /o &.
The correct asymptotic decay of u;(x,0) is not recap-
tured in the /=1 case.

Since N takes positive integral values and M is taken to
be continuous, the fluctuation sum (3) becomes

=223 [ amu(vimp). 9)
N=] *

Substituting (8) into (9) and applying the Mittag-Leffler
theorem [20] leads to the following closed-form expres-

sion for y:
2 2
T ,’((h) - cJq(ca) a= 27 ' (10)

m? 2237, _1(ca)’ mh

Note that y has the expected scaling form y~t "X (h/
t4) where t=(T.—T)/T, and h are small with critical
exponents y=75 and A= . The analytic character of
the right-hand side of (10) in the complex a plane can
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immediately be seen by noting that it can be written as a
quotient of two uniformly convergent series for all a € C
[20]. It is therefore a meromorphic function of a with
simple poles at the zeros of J,—1(ca). Since we know
that y(h) is analytic for Re(mh) >0 then J,—(ca)
should have no zeros for Rea > 0. For a real positive,
this was already known to be true provided ¢ <1 [20].
However, there are zeros for Rea <0. These can be lo-
cated by first writing

Ja—1(ca) =e™[cos(na)J —o(—ca)

+sin(ra) Y -o(—ca)l, an

which relates the Bessel functions J,(z) and Y,(z). We
now examine (11) for large |a| with Rea <0. Since
¢ <1, as |a| increases J| —.(—ca) vanishes exponentially
while Y;—,(—ca) grows exponentially and both are
monotonic [21]. The second term of (11), which dom-
inates for large |a|, is zero for @=—n where n € Z4.
Hence, by Rouché’s theorem, the zeros of J,—(ca) occur
on the real axis near a~ —n when |a| is large. Thus the
origin of the 1/a plane is a limit point of poles along the
negative real axis and any neighborhood of the origin
contains an infinite number of poles and hence this point
is an essential singularity. We now explain how the
above considerations relate to singularities at first-order
phase transitions. To do this, we consider the following
two ways of analytically continuing m off the real axis of
the h plane.

Case (a).—Here we restrict the ensemble so that the
magnetization stays positive when h takes negative real
values. This facilitates a discussion of metastability. To

22/31.2 (l ___CZ)l/Z ei”/6Ai'(&2/3Ce —in/})

Sx(ih) ~

(m*)Z 2i§l/2dl/3

Ai(dzlJCe —I'X/3)
for large @— oo where Ai(z) is the Airy function and ¢ is
a number given by

2823 =1n{l1+ (1 =) )/} —(1=cD2. (13b)
The Yang-Lee circle theorem [6(b)], for a finite lattice,
states that partition-function zeros (and therefore free-
energy singularities) are found only along the imaginary
axis of h. Following Yang and Lee [6(b)], in the thermo-
dynamic limit, these zeros form a distribution character-
ized by a density g(6) where g(0)d@ gives the number of
zeros per spin site for —2h between i@ and i(0+d0).
This can be obtained from y(k) through

47g'(8) =Imy(—i6/2+0) (14)

with the boundary condition g(0) =m™*/2x. Substituting
(10) into (14) leads to an expression for dg/d@ which can
be expressed in terms of Airy functions as m*|0|/72— 0
[21]. Note that g(8) has itself an essential singularity at
0=0 reflecting the fact that the origin of the 1/a plane is
a limit point of poles. Moreover, we know on rigorous

do this we construct the bubble model so that m =m™* for
all h € C, in which case we can have Rea <0. Hence
(k) has simple poles along the negative real axis of the h
plane when

m*h/2tt~—1/n (12)

for large n € Z4+. Thus, h=0 is the limit point of an
infinite number of poles along the negative real axis and
is therefore an essential singularity. This is reminiscent
of singular behavior found through numerical studies of
the two-dimensional Ising transfer matrix and theoretical
work on two-level models [22]. It is also analogous to the
singularity found in the droplet model [1,2] and those
found in field-theoretical models of condensation [23] as
predicted by approximate instantonlike solutions—in
these cases one finds that the negative real axis forms a
cut rather than a line of poles.

Case (b).— We now work with an unrestricted ensem-
ble for which one can show in the Ising case that
m(—h)=—m(h) and x(h) =x(—h) for all h € C\Imh
on a finite lattice and also on the infinite lattice provided
the limits exist [6(b)]. The bubble model is constructed
first in the half plane Reh >0 by analytic continuation
from the real axis (on which m =m?®*) to the entire half
plane. In the half plane Reh <0 we put m=—m™* on
Imh =0 and then continue to the entire left half plane.
Thus, since now Rea>0 for all A € C\Imh, the only
singularities can be on Rek =0, equivalent to a circle
theorem. There is a jump discontinuity on this line given
by &x(ih) =lim._ oly(ih +€) —x(—ih+¢€)] using the
even character of y(h), so that the asymptotics given by
Olver for Bessel functions [21] can be applied, giving

272
m*h

a=

(13a)

grounds [14], from the theorem of Isakov [12], that g(9)
has an essential singularity at 8 =0 for the d-dimensional
Ising model for low enough temperature.

Observe that m =m(h) can be determined in principle
for larger values of h by boot-strapping equation (10).
This involves writing y=8m/0h and solving the resulting
differential equation for m =m(h) [14].

We conclude by emphasizing that for the planar Ising
model, with T < T, the bubble picture gives a very good
description of two-point correlation functions at h=0;
indeed it can even give exact results [24]. Furthermore,
when h#=0, it predicts a mass spectrum which, as A— 0,
coincides exactly with that found by McCoy and Wu
[15]. Therefore, while the bubble model is not expected
to work so well for large h, it appears to be very reliable
close to h=0. This is fortunate because it is the thermo-
dynamics close to this point, at the first-order phase
boundary, that has been the main focus of this paper.
We have found, via the fluctuation sum applied to the
bubble model, that y(h) has an essential singularity at
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h=0. Furthermore, the bubble model for an unrestricted
ensemble leads to a Yang-Lee circle theorem, whereas re-
stricting the ensemble in a way corresponding to metasta-
bility implies that =0 is a limit point of an infinite num-
ber of poles [of y(h)] along the negative real axis—an
analog of the droplet singularity. Finally, we stress that
these results are specific to two-dimensional systems.
Higher-dimensional models may well behave differently,
but it is hoped that the ideas presented here remain ap-
plicable.
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