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We derive an extension of the Hohenberg-Kohn (HK) theorem which applies to the valence elec
trons only, excluding core states. The energy functional of the valence electron density is minimized
giving a variational bound on the total ground-state energy. A Kohn-Sham-type approximation
suggests treating valence states by the local density approximation (LDA) and the core states by
Hartree-Pock. The functional can be used to generate pseudopotentials or to perform all-electron
calculations beyond conventional LDA. Our formalism also yields a simple derivation of the HK
theorem for Dirac electrons.

PACS numbers: 71.10.+x, 31.15.+q

Density functional theory is the cornerstone of much
of computational condensed matter physics and quantum
chemistry [1—5]. Its success comes from a combination
of both being based upon a rigorous many-body theo-
rem, and because it provides good approximations for
calculating total energies without requiring a full solu-
tion to the many-body problem. The most widely used
of these approximations are the local density approxima-
tion (LDA) [1], and improvements to LDA based upon
various gradient corrections [6—8]. These approximations
are accurate when the electron density is slowly varying.
Unfortunately in most real atoms, molecules, and solids
the deep atomic core states are not well represented by
LDA or gradient approximations. The core state energies
are dominated by kinetic, Coulomb, and exchange contri-
butions, with correlation playing a relatively minor role.
An exact nonlocal exchange treatment of the core elec-
trons should therefore be superior to LDA. On the other
hand, for the valence electrons, where exchange and cor-
relation are both important, LDA, perhaps including gra-
dient corrections, is more appropriate than Hartree-Fock
exchange alone. The aim of the present paper is to show
that there exists a new extension of the Hohenberg-Kohn
theorem which applies to the valence electrons alone, ex-
cluding core states. This functional provides a simple,
but rigorous, framework in which valence states may be
approximated by LDA while core states are treated more
appropriately, for example, with exact exchange.

There is also an urgent need for approximations be-
yond LDA because of the recent development of varia-
tional and quantum Monte Carlo calculations (QMC) in
solids [9, 10]. Especially there is a need for new types
of pseudopotentials which are more accurate than stan-
dard ones, and which do not assume LDA in treatment
of the core states. This led Shirley and co-workers [11]
to investigate several diferent combinations of nonlocal
exchange together with local correlation. They found
that Hartree-Fock exchange together with local corre-
lation provides better atomic energies and more trans-
ferable pseudopotentials than pure LDA. Subsequently
Bylander and Kleinrnan [12] developed pseudopotentials
based upon a Hartree-Fock approximation for the core
states together with LDA for the valence states. These

pseudopotentials were substantially better than simply
using LDA for the valence states alone, and were corn-

parable in accuracy and transferability to conventional
LDA pseudopotentials with core corrections [13] while

being more straightforward to implement. We show be-

low that these semiempirical improvements over LDA can
be rigorously justified as the first-order approximations
to an entirely new Hohenberg-Kohn energy functional.

In this Letter we show that there exists a new fam-

ily of Hohenberg-Kohn (HK) density functionals which

are functionals of the valence electron density. We there-
fore explicitly eliminate the core states from the func-

tional. Second, we show that a natural set of approxi-
mations similar to the original derivation of LDA leads

to a simple physically motivated approximation: valence

only LDA and Hartree-Fock core-core and valence-core

exchange. This new functional should be useful in sev-

eral types of calculations. First, it should allow one to
generate pseudopotentials which are more accurate than
present ones based upon all-electron LDA [14, 15]. In-

deed the first-order approximation suggested by the new

method is essentially the same as in Bylander and Klein-
man's recent work [12]. Second, since the core states are
not treated by LDA but by an explicitly many-body wave

function, pseudopotentials generated in this scheme can
be directly used in both density functional theory and full

many-body calculations of solids or atoms and molecules.

Finally, the new functional is not limited to pseudopoten-
tial calculations, but could also be used in full all-electron
calculations for solids [16]. Here the method again pro-
vides approximations beyond LDA, and would be useful
even when the core states are overlapping on neighboring
atoms and pseudopotentials cannot be used.

The derivation of a Hohenberg-Kohn theorem for va-

lence electrons closely parallels the derivation of the or-

dinary HK theorem given by Levy [17]. First we must

define "core" and "valence" wave functions and the as-

sumption which lets us separate these two sets of degrees
of freedom. We suppose that the core states are described

by a given, fixed, wave function of the n core electrons:

Q, (zi, 2:q, . . . , z„), where, for brevity, r = (r, o). g, may
be a Hartree-Fock state, but could also include any ar-

bitrary core-core correlations. Now suppose that there
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0 = dx Q,*(x,x2, . . . , x„)g„(x,x„+2, . . . , x~), (2)

where f dx = Q f dsr. This condition is a generalized
form of orthogonality. For brevity we shall refer to this as

l-orthogonality, since integration is over any one of the
many particle coordinates. If g, and @„aresimple Slater
determinant wave functions, then they are 1-orthogonal
if all the valence single-particle states are orthogonal to
all the core states. Product wave functions obeying gen-

eralized orthogonality conditions such as Eq. (2) are a
well-known approximation [18]. The 1-orthogonality con-

dition is especially useful in deriving a density functional

theory, since if it is satisfied it is easy to see that the all

electron density p(r) obeys

p(r) = p.(r) + p (r) (8)

for wave functions in the form of Eq. (1), where p, and p„
are the core and valence electron densities, respectively.

We are now in a position to state and derive the
Hohenberg-Kohn theorem. Let the many-body Hamil-
tonian be of the form

H = T+ V+ d r V,„i(r)p(r),

where T = P,. 5 7'2/2m is the kinetic energy operator,
V =

2 g, Ir —r'I is the particle-particle interaction,
Ve„i(r) is the external potential, and P(r) is the electron
density operator. Then the expectation of the total en-

ergy in the full wave function 1 is

E = + d r U,„i(r)[p,(r) + p„(r)] . (5)
(O'IT + VI@)

Following Levy's derivation of density functional theory
(DFT) we define the functional Q[p„] as

Q[p„] = min
. (~IT+VI&)

(6)

are m valence electrons, described by a many-body wave
function: Qv(xi, x2, . . . , x ). All of the discussion below
will be based on the approximate wave function for the
whole system:

@(xi, . . . , x~) = Ag, (xi, x2, . . . , x„)
xg„(x„+i,x„+2, . . . , xi'), (1)

where X = n+ m is the total number of electrons and
A is the antisymmetrization operator. This approxima-
tion amounts to the neglect of core-valence correlation,
but full inclusion of core-valence exchange, and core-core
and valence-valence exchange and correlation. It is this
approximate factorized wave function which allows us to
develop the density functional theory we seek. Since we
restrict ourselves to this variational class of wave func-
tions the rigorous density functional we derive is itself
a variational approximation to the true ground-state en-

ergy.
As well as Eq. (1) we shall also find it useful to impose

another condition. We shall restrict the set of valence
many-body wave functions to those which satisfy

where @ is given by Eq. (1) and the minimum is taken
varying all valence wave functions with the given valence
density p„:

p-(r) = (O. lp(r) 14.)/(@ I@.), (7)
which are 1-orthogonal to gc. In the search for the min-

imum over valence states the core wave function Q, is

regarded as a fixed external constraint. We can now de-

fine the valence density functional:

E„[p„]= Q[p„] + d r V,„&(r)[p,(r) + p„(r)] . (8)

Clearly E„[p„] is minimized at the valence density p„
corresponding to the lowest variational energy of wave
functions defined by Eq. (1) and the constraint 2. This
is sufBcient to prove the theorem.

An equivalent way to derive the theorem is to first
note that the set of m-body valence wave functions

Q„(xi, x2, . . . , x ) which satisfy the 1-orthogonality con-

straint, Eq. (2), forms a Hilbert space, since the con-
straint is linear. We can thus define a valence only many-

body Hamiltonian by the restriction of the full Hamilto-
nian to the states in this Hilbert space. For example, if

Q» and /vs are any two m-body states in this space, we

can define the matrix elements of the effective m-body
Hamiltonian

(QviI+eff I@vj ) = (AV vilcIHIA@vj @c)

and overlap matrix elements

vi vj = vi c vj c

The ground-state eigenvector of this effective m-particle
Hamiltonian gives the valence density p„(r) which min-

imizes the functional E„[p„],and the lowest eigenvalue
corresponds to the value of E„[p„]at that density.

Before proceeding, two comments are necessary. First,
the functional is only defined for valence electron densi-
ties which are N representable, i.e. , which correspond to
an rn-particle many-body wave function. Furthermore,
the density must be N representable in terms of wave
functions satisfying the 1-orthogonality constraint of Eq.
(2). By construction the valence density which minimizes
the functional satisfies these conditions, since it corre-
sponds to the actual wave function with the variational
minimum energy. A more detailed analysis of the do-
main of N-representable densities is beyond the scope of
this Letter; see the works of Gilbert [19], Harriman [20],
and Levy for more discussion of this problem [21]. The
second comment is to note that the 1-orthogonality con-
dition, Eq. (2), is possibly more strict than absolutely
required. It was chosen because it is a sufficient condi-
tion to prove the theorem (rather than being a necessary
condition) and it will probably be most useful in practi-
cal calculations. If the class of 1-orthogonal valence wave
functions prove too limited in accurate calculations, then
this could be extended relatively easily.

We now show how the above theorem might be applied
straightforwardly in realistic calculations, and we also
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find the simplest generalization of the Kohn-Sham single-

particle wave functions [1]. We first suppose that the core
wave function is adequately represented by a single Slater
determinant:

& (» " & ) =&&i(»)&2(») &"(& )

For a single atom the HF orbitals P, (z) will be the atomic
core states, while in a solid they may be the Bloch wave
functions of deep bands which are well away from the
Fermi surface. Without loss of generality the P, form an
orthonormal set. For now we assume that the P, are a
fixed known set of functions. They are essentially free
variational parameters since they can be chosen to give
the best overall many-body energy at the end of the cal-
culation. Given these fixed core states we can now define
the Hilbert space of possible valence orbitals. Choos-
ing an infinite set of functions P„+i,P„+z, . . . which are
orthonormal to each other and to the core orbitals we
can construct possible valence wave functions as sums of
Slater determinants:

0.(2: +i, , aiv)

) cj,)c, ,i~4j'(&n+1)4')c(+n+2) ' ' ' 0((+iv) (12)
jk" l

with j, k, . . . , t ) n Any w. ave function of this form au-

tomatically satisfies the 1-orthogonality condition of Eq.
(2). At least in principle, one can minimize the energy
over these possible valence wave functions for any given
set of core states. Such a calculation would yield the
exact functional minimum of E„[p„]and the density p„
at that minimum. Such a calculation is certainly possi-
ble for finite systems such as atoms and molecules, using
configuration interaction (CI) or Monte Carlo techniques.
Indeed the damped-core QMC calculations of Hammond,
Reynolds, and Lester [22] make it possible to evaluate

Ev[p„] = T[p„] + d r V,„),(r)p„(r) + — d rd r'
2

the energy, E„[p„],exactly, since they correspond to a
product many-body wave function with a fixed trial core
wave function and an exact QMC evaluation of the va-

lence wave function.
Density functional theory is mostly useful because it

provides accurate approximate answers, using say LDA,
even in cases where exact many-body results are not
available. To construct an approximate scheme analo-

gous to LDA we follow the original development of Kohn
and Sham [1]. First introduce a new set of orthonormal
single-particle functions, g„+i,Q„+2, . . . , Qiv, which we

shall call the valence Kohn-Sham orbitals. It is natural
to enforce the orthogonality of these valence Kohn-Sham
orbitals to the core Hartree Fock o-rbitals. The reason for
this is that then the valence density

„(r) =
i =n+1,N, cr

i4.(r o)l'

is explicitly N representable with a many-body wave
function 1-orthogonal to the core wave function (con-
struct a Slater determinant out of the valence Kohn-
Sham orbitals). Just as in conventional DFT the valence
Kohn-Sham orbitals generally have no direct physical sig-

nificance. In contrast the HF core orbitals are a real part
of the approximate all electron many-body wave function.
Following Percus [23] we can define a functional, T[p„],
corresponding to the kinetic energy of a set of noninter-

acting valence electrons with density p„:
h 7'2

T[p ]
= min ). (q l

—
2 [q ), (14)

i=++&,N

where the minimum is taken over all possible valence
Kohn-Sham orbitals which give the density p„and are
orthogonal to the core HF orbitals. Collecting terms we

can write the total energy in its final form:

(')'("), d, d, (').(")+E,E [ ] (5)C VXC PV

Here E, is the core only Hartree-Fock energy:

h, 7'2 ] ( i ().(4*i — l0.) + d'«. ~(r) p. (r) +—

1 s s, P,"(r,o)Pj(r, o)ct)~(r', o)P, (r', o)d"d'" ' '
(16)

t)g) CT

The remaining term in Eq. (15), E,„,[p„], we shall call the valence exchange-correlation energy functional. The
Kohn-Sham orbitals satisfy self-consistent equations found by minimizing Eq. (15):

Q, l

— +V,„i(r)+ d r'; +V,„,[p„] i Q, =e,Q, ,
( n'v' s p(r)+p (r)

2m lr —r'l '"' " )
where Q, is a projection operator enforcing orthogonality to the core states, and V „,[p„] = BE „,[p„]/Bp„(r).

Whether or not the valence density functional proves useful depends upon obtaining accurate approximations to
E „,[p„] in Eq. (15). The simplest reasonable approximation for this term,

E-.[p.] =—
i=1,n, j=n+1,N, cr

, 4'(r o)4 (r o)~ (r o)0 ( o)
(18)

consists of core-valence exchange energy and valence only exchange-correlation energy E„,[p„]. The latter may,
for example, be approximated by the conventional LDA or gradient corrected LDA. This combination of Hartree-
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Fock core and valence LDA exactly corresponds to the
approximation used by Bylander and Kleinman [12], pro-
viding a rigorous justification for their approach. Fur-
thermore, by evaluating the full valence energy functional

E„[p„]exactly by QMC, as discussed above, one could use
Eq. (18) to compare the exact valence only exchange-
correlation functional E„,[p„] with the LDA, and thus,
perhaps, develop more accurate functionals. Certainly
more work is necessary to test the accuracy of using LDA
in Eq. (18) for a wider range of systems than explored

by Bylander and Kleinman [12].
Finally, the formalism developed here also provides

a very straightforward derivation of the Hohenberg-
Kohn theorem for Dirac electrons [24—26]. This density
functional is a nontrivial extension of the conventional
Schrodinger electron density functional theory because
the Dirac Hamiltonian

H~ = T~ + V+ d rV,„t(r)p(r), (19)

with T~ = Q, ccrc p, has both positive and negative
energy solutions. The spectrum is only bounded below
when the negative-energy Dirac sea of states is assumed
occupied and thus explicitly excluded from the electron
Hilbert space. The similarity to the valence-core prob-
lem discussed above comes from identifying the single-
particle core orbitals Pq, P2, . . . , P„with the infinite set
of negative-energy single-particle Dirac spinors. Since all
the states in the negative-energy Dirac sea are unavail-
able to positive-energy electrons the many-body wave
function of a set of Dirac electrons Q~(zq, zz, . . . , Qm)
must be 1-orthogonal to all of the states in the sea. In
exact parallel to our derivation above one can simply
define the Hohenberg-Kohn density functional for Dirac
electrons by minimizing the energy in the Hilbert space
of rn body elect-ron wave functions 1-orthogonal to all
the Dirac sea states. This derivation is more straight-
forward than the usual derivation of relativistic density
functional theories [24, 25], and places more emphasis on
the importance of the restricted Hilbert space due to the
1-orthogonality constraints.

In summary, we have shown that it is possible to ex-
plicitly construct density functionals of the valence elec-
tron density, within a class of variational many-body
wave functions. The functional does not include core-
valence correlation, but in principle exactly accounts for
core-core and valence-valence exchange-correlation ener-
gies as well as core-valence exchange. The valence den-

sity functional can provide a starting point for calcula-
tions with higher numerical accuracy than possible with
standard all-electron DFT-LDA. It can be useful for gen-
erating pseudopotentials for DFT calculations with only
the valence electrons, and those same pseudopotentials
could also be used in full variational Monte Carlo calcu-
lations since they do not assume I DA for the core states.
The valence density functional can also be used in all-
electron calculations in which the core states are treated
by Hartree-Fock and the valence electrons by DFT. Fi-

nally, the method is not restricted to situations where
the core states on neighboring atoms are nonoverlapping,
but can even be applied when they form extended Bloch
states.
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