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Using the scanning method we carry out for the first time extensive simulations of trails and self-

avoiding walks (SAWs) terminally attached to an adsorbing linear boundary on a square lattice. A bulk

attraction energy is also defined for a self-intersection of a trail and a pair of nonbonded nearest-
neighbor monomers of a SAW. The chains are simulated at the special point. Our critical exponents
differ significantly from the exact values of Vanderzande, Stella, and Seno [Phys. Rev. Lett. 67, 2757
(1991)]for the 8' model. Thus, their conjecture, that the 0 and 0' points belong to the same universality
class, is not supported.

PACS numbers: 64.60.Kw, 02.70.+d, 05.70.Jk, 36.20.Ey

The collapse of polymers at the Flory 8 point [1,2] and
their adsorption on a surface are fundamental phenomena
in polymer physics with a wide range of industrial appli-
cations [3] and biological importance (e.g. , protein fold-

ing [4]). From the theoretical point of view, a great deal
of progress has been achieved in recent years in two di-
mensions (2D), mainly due to the advent of Coulomb-gas
techniques [5] and conformal invariance [6]. The 8-point
behavior has been usually modeled by self-avoiding walks
(SAWs) on a lattice, where an attractive interaction en-

ergy is defined between a pair of nonbonded nearest-
neighbor (nn) monomers [7,8]. In a seminal work, Du-
plantier and Saleur (DS) [9] proposed the exact tricriti-
cal exponents of a collapsing polymer in 2D. In the bulk
they calculated the shape exponent v, the partition func-
tion exponent y, and the crossover exponent p. They also
obtained the free-energy surface exponents for a tricriti-
cal polymer that is terminally attached to a nonadsorbing
impenetrable boundary (the ordinary point), y~ =y and

y~~ =v. These exponents have been derived for a special
model of SAWs on a hexagonal lattice with randomly
forbidden hexagons. However, it has been pointed out
[10-12] that this model consists, in addition to the nn at-
tractions, also of a special subset of the next-nearest-
neighbor attractions and therefore, instead of describing
the usual 0 point, it might describe a multicritical 0' point
[13]. A related question, raised by Shapir and Oono
[14], concerns the universality class of trails, which are
walks with a weaker excluded-volume restriction than
that of SAWs [15]. They have argued that at tricriticali-
ty (unlike at infinite temperature) trails and SAWs may
belong to diff'erent classes [16-20].

The numerical results for the 0 point (i.e. , for SAWs
with nn attractions) and for tricritical trails mostly agree
with the DS value v= 7 while the values for y are slight-

ly smaller than the DS value 7 . On the other hand, the
central values for p are larger than the DS value
—0.43 (see Refs. [21-23] and references cited therein);
for the most reliable Monte Carlo studies they range

from 0.48 to 0.60 for SAWs [12,21,22] and from 0.68 to
0.80 for trails [17,18]. This suggests that the 0 and 0'

points and trails belong to diff'erent universality classes.
However, the strongest discrepancy was found for the tri-
critical surface exponents of both SAWs [21,24] and
trails [18], where the numerical values are dramatically
smaller than those of DS, i.e., y -0.6 and y~~

——0.50,
vs —1.143 and -0.571, respectively.

Recently Vanderzande, Stella, and Seno (VSS) [25]
have shown that within the framework of the 0' model,
the DS surface exponents, y~

=
7 and y~ ~

= 7, are not re-
lated to the ordinary point but to the special one, i.e., the
multicritical point at which an adsorption transition of a
0' chain occurs, and that the corresponding surface cross-
over exponent is p, = 2', . They also derive y~(8') =

& at
the ordinary point, which is compatible with numerical
data for SAWs [21,24,25]. Thus (ignoring the above
data for p in the bulk), they have conjectured that the 0
and 0' points are in the same universality class. In this
paper we examine this conjecture by calculating the criti-
cal exponents of SAWs and trails on a square lattice at
the special point; our study also provides new information
about the relation between SAWs and trails. We use the
scanning simulation method which has been found very
efficient to handle such problems [17,18,22].

The trails and SAWs consist of /V steps (bonds) (i.e. ,

iV+1 monomers) and they start from the origin located
on an adsorbing impenetrable linear boundary on the
square lattice. A trail may intersect (or touch) itself only
once at an already visited site, but its bonds are not al-
lowed to overlap [14]. An attractive bulk energy
(eb &0) is assigned to each self-intersection and an at-
tractive surface energy e, (e, (0) is defined for each
monomer that is located on the surface. For SAWs an
attractive energy eb is defined for two nn nonbonded
monomers and an attractive surface energy e, is assigned
to each bond (rather than a monomer, as for trails) on

the surface. This nontraditional definition of the surface
interaction [26] is consistent with recent numerical stud-
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where kg is the Boltzmann constant, T is the absolute

temperature, a=1 denotes the usual partition function,
while a 11 means that the summation is carried out

only over the subgroup of chains which also end on the

surface. The Boltzmann probability is

P; =exp( —E;/kttT)/Z~ .

Thus, the average surface energy E, per e, reads

(2)

ies of this model [24,27].
Three different microscopic energies can be defined for

configuration i: the bulk energy E; =ibm;. , where m; is

the number of self-intersections and nn pairs of mono-

mers for trails and SAWs, respectively; the surface ener-

gy, E,'=e, m,', where I,'- is the number of monomers or
bonds on the surface for a trail or a SAW, respectively;
and the total energy, E; =E; +E,'. Two partition func-

tions Z, are defined:

Z, =g'exp( E;/k—tt T),

K,* is based on the fact that with the scanning method,
results at many different temperatures can be obtained
from a single sample simulated at a given temperature.
The number of attempted chains for each model is rela-
tively large, no-40x 10; however, the number of accept-
ed chains n, p pt becomes significantly lower as N in-
creases; for trails and SAWs of N=200 it is -2.6
x 10 and —0.9 x 10, respectively. The sample for
trails was generated at (Kb, K, ) =(1.086,0.690) where
the value of Kb was taken from Refs. [17] and [18]
and results were calculated for the 30 temperatures
K, =0.650,0.653, . . . , 0.737 and also at Kb =1.082 and
1.090 which define the error bars for Kb*. The sample for
SAWs was calculated at (Kb, K, ) =(0.658,0.810) (Kb*

was taken from Ref. [22]) and results were obtained for
the 34 temperatures, K, =0.760,0.763, . . . , 0.859 and
Kb =0.654 and 0.662, which define the error bars for Kb .
The surface critical temperature K,* was determined
from the behavior of the surface energy E, [Eq. (3)] at
(Kb', K,*) [»,32],

E =e —) QPBEs (3) Es -N (5)

It proves convenient to define the bulk and surface re-

ciprocal temperatures, Kb = —eb/kttT and K, = E /

kt)T, where their critical values are denoted by Kb and

K, , respectively.
With the scanning method [28], a chain is generated

step by step with the help of transition probabilities which

are obtained by scanning all the possible chain continua-

tions in b future steps. Thus, the construction probability

P;(b) of chain i is known. For a small b, the future can

be scanned only partially; therefore a construction of a

chain may fail and in this case it is discarded. However,

P;(b) is biased, i.e., it is not equal to P; [Eq. (2)l; an un-

biased estimation F, of the exact free energies F,
= —kttTlnZ, can be obtained from a sample of size n„
generated with P;(b), where no is the number of chains

attempted [29],

Therefore, at this point one expects E,(2N)/E, (N) =2 '

(if corrections to scaling are ignored). These ratios for
N =10,20, . . . can be plotted as a function of K, where
the intersection point defines both K,* and P, [33]. In

Fig. 1 such a plot is presented for SAWs, where the re-
sults for N =10 and 20 and for 90 and 100 were omitted
since they show strong corrections to scaling and large
statistical errors, respectively [34]. A careful analysis
(which gives a larger weight to the results of the longer
chains) leads to the following values:

K,*(SAWs) =0.805 ~ 0.012,

p, (SAWs) =0.483 ~ 0.022,

0.58

,
"' exp[ —E;(,)/kt)T]

F, = —kttTln no
'

P;(,)(b)
(4)

0.56—

0.54—

0.52 —--

An appropriate equation can also be defined for the ener-

gy E, [Eq. (3)]. The bias can also be removed by a pro-

cedure due to Schmidt [30], in which an effectively small-

er sample (the accepted Boltzmann sample) is extracted
from the biased one. Thus, n„„~t, the number of dif
ferent chains accepted to the unbiased sample, serves as

the effective sample size for the importance-sampling re-

sults.
We generated with the scanning method trails of

length N=240 using b =4, and SAWs of N=200 with

b =3. In order to investigate the dependence of various

properties on N, their importance-sampling values were
calculated and accumulated for the partial chains of
lengths 10,20, . . . . As in previous studies, the search for

0.50

0.48

0.46

0.44

0.42

0.40 I I I I I I I I I I

0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86

Ks

FIG. 1. Plots of log[E, (2N)/E, (N)]/log2 vs the surface tem-
perature K, for SA%s of N 30,40, . . . , 80 at the critical bulk
temperature Kb* 0.658. The intersection point defines both
K, and p, .
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Z =By N' (6)

where B, is a prefactor and p, the growth parameter, has

the same value as for tricritical chains in the bulk. In or-
der to calculate p and y~ we used the same method as for

K, and p, . Thus, at (Kb*,K,*) one obtains from Eq.
(6) (for a=1) 2Z(2N)/Z(N)p =2"'. Therefore, one

can calculate for each pair (N, 2N ) the values of
2Z(2N)/Z(N)p for diA'erent values of p, where the in-

tersection point of these lines should define both y~ and

the correct p. In Fig. 2 such a plot is presented for trails
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FIG. 2. Plots of log[2Z~(2N)/Z~(N)p~i/log2 vs the growth
parameter p for trails of N 20,40, . . . , 100 at the critical tem-
peratures (Kb*,K, ) (1.086,0.686). The intersection point
defines both the correct p and yi.

where the errors here and in the rest of the paper are
95%-confidence limits. The central value of I), is an aver-

age over the diA'erent results for p, obtained at K,*

=0.805 (the lines do not meet exactly at a point). In or-

der to obtain the error bars, results for K,* have been cal-
culated from similar plots based on a smaller number of
lines (e.g. , N =30-80, 40-80, 50-80), not only at
Kb* =1.086 but also at 1.082 and 1.090. The errors of p,
also take into account the error in the surface tempera-
tures. A similar analysis for trails leads to

K,*(trails) =0.686 ~ 0.012, II, (trails) =0.453 ~ 0.025.

As expected, the above result, K,*(trails) =0.686 is

significantly larger than the exact value 0.405. . . for a
random walk on the same lattice [26]. K,*(trails)(K, (SAWs) is also expected due to the fact that it is

more difficult to attract a SAW to the surface than a
trail. It is important to note that the values of p, for the
two models are equal within the error bars and that both

are significantly larger than the value 2'] -0.38 obtained

by VSS for the 8' model at the special point; therefore
our results do not support their conjecture that the 8' and

8 points belong to the same universality class.
The partition functions Z, [Eq. (1)] can be obtained by

Eq. (4) where at (Kb, K, ) one expects

at the transition temperatures (1.086,0.686) for N
=20,30, . . . , 100 and a well-defined intersection point is

observed. A detailed analysis for trails and SAWs leads
to

y~(trails) =1.265 ~0.048,

p(trails) =2.9914~ 0.0036;

yi (SAWs) = 1.265 + 0.053,

p(SAWs) =3.213+ 0.009.

Again, the error bars have been obtained by carrying out
similar calculations at (Kb*+Db, K,*+D,), where Db
and D, denote the errors in the corresponding critical
temperatures. As expected, the above values of p are
equal, within the error bars, to those obtained for SAWs
and trails in the bulk and at the ordinary point. The
values of yI for the two models are equal within the error
bars to 1.265 which is significantly larger than the VSS
prediction 7

—1.143. We also estimated the exponent

yl i. As expected, the samples of chains that also end on
the surface are relatively small, which makes it difficult to
use the method described above for yI and p. Therefore,
yII has been estimated from the values of p obtained
above and best fitting the data for FII by Eq. (6) over
various ranges of chain lengths (Nm;„, N~,„); the smallest
value of N;„ is 20 and the largest values of N, „are 60
for SAWs and 80 for trails. Thus,

yI ~(SAWs) =0.72+ 0 06, yII(trails) =0.78 ~ 0 06.

The errors have been obtained by carrying out such cal-
culations at (Kb* ~ Db, K,* ~ D„p + D„), where D„ is the
error in p. For each model, the above values of y~ and

yI~ satisfy, within the error bars, the Barber [35] surface
scaling relation, 2yi —

yi I
=y+ v; for the DS values

7 + 7 7
—1 .7 1 . For trails the fit is better than for

SA Ws, where 2 y]
—

yl l
= 1.75 + 10, and 1.81 + 10, re-

spectively. This probably stems from the fact that the
samples of chains that also end on the surface are larger
for trails than for SAWs [36].

In summary, this work provides the first Monte Carlo
estimation of critical exponents of trails and SAWs on
the square lattice at the special point. Our results for p„
y~, and yI ~ (like previous results for y and v in the bulk)
have been found to be the same, within the error bars, for
the two models. However, the present results do not sup-

port the VSS conjecture that the 0 and 0' points belong to
the same universality class [37]. We hope that our study
will motivate further theoretical work in this still contro-
versial but exciting subject.
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