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Surface Critical Exponents of Self-Avoiding Walks and Trails on a Square Lattice:
The Universality Classes of the 6 and 6’ Points
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Using the scanning method we carry out for the first time extensive simulations of trails and self-
avoiding walks (SAWs) terminally attached to an adsorbing linear boundary on a square lattice. A bulk
attraction energy is also defined for a self-intersection of a trail and a pair of nonbonded nearest-
neighbor monomers of a SAW. The chains are simulated at the special point. Our critical exponents
differ significantly from the exact values of Vanderzande, Stella, and Seno [Phys. Rev. Lett. 67, 2757
(19911 for the 6 model. Thus, their conjecture, that the 8 and 6’ points belong to the same universality

class, is not supported.

PACS numbers: 64.60.Kw, 02.70.+d, 05.70.Jk, 36.20.Ey

The collapse of polymers at the Flory 6 point [1,2] and
their adsorption on a surface are fundamental phenomena
in polymer physics with a wide range of industrial appli-
cations [3] and biological importance (e.g., protein fold-
ing [4]). From the theoretical point of view, a great deal
of progress has been achieved in recent years in two di-
mensions (2D), mainly due to the advent of Coulomb-gas
techniques [5] and conformal invariance [6]. The #-point
behavior has been usually modeled by self-avoiding walks
(SAWs) on a lattice, where an attractive interaction en-
ergy is defined between a pair of nonbonded nearest-
neighbor (nn) monomers [7,8]. In a seminal work, Du-
plantier and Saleur (DS) [9] proposed the exact tricriti-
cal exponents of a collapsing polymer in 2D. In the bulk
they calculated the shape exponent v, the partition func-
tion exponent y, and the crossover exponent ¢. They also
obtained the free-energy surface exponents for a tricriti-
cal polymer that is terminally attached to a nonadsorbing
impenetrable boundary (the ordinary point), y; =y and
yi1=v. These exponents have been derived for a special
model of SAWs on a hexagonal lattice with randomly
forbidden hexagons. However, it has been pointed out
[10-12] that this model consists, in addition to the nn at-
tractions, also of a special subset of the next-nearest-
neighbor attractions and therefore, instead of describing
the usual 6 point, it might describe a multicritical ' point
[13]. A related question, raised by Shapir and Oono
[14], concerns the universality class of trails, which are
walks with a weaker excluded-volume restriction than
that of SAWs [15]. They have argued that at tricriticali-
ty (unlike at infinite temperature) trails and SAWs may
belong to different classes [16~20].

The numerical results for the 6 point (i.e., for SAWs
with nn attractions) and for tricritical trails mostly agree
with the DS value v=% while the values for y are slight-
ly smaller than the DS value %. On the other hand, the
central values for ¢ are larger than the DS value %
~0.43 (see Refs. [21-23] and references cited therein);
for the most reliable Monte Carlo studies they range
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from 0.48 to 0.60 for SAWs [12,21,22] and from 0.68 to
0.80 for trails [17,18]. This suggests that the 6 and 6’
points and trails belong to different universality classes.
However, the strongest discrepancy was found for the tri-
critical surface exponents of both SAWs [21,24] and
trails [18], where the numerical values are dramatically
smaller than those of DS, i.e., ;~0.6 and y;;~ —0.50,
vs ~1.143 and ~0.571, respectively.

Recently Vanderzande, Stella, and Seno (VSS) [25]
have shown that within the framework of the 6" model,
the DS surface exponents, y; = % and Y= % are not re-
lated to the ordinary point but to the special one, i.e., the
multicritical point at which an adsorption transition of a
0' chain occurs, and that the corresponding surface cross-
over exponent is ¢, = 3. They also derive 7,(8') =% at
the ordinary point, which is compatible with numerical
data for SAWs [21,24,25]. Thus (ignoring the above
data for ¢ in the bulk), they have conjectured that the 6
and € points are in the same universality class. In this
paper we examine this conjecture by calculating the criti-
cal exponents of SAWs and trails on a square lattice at
the special point; our study also provides new information
about the relation between SAWs and trails. We use the
scanning simulation method which has been found very
efficient to handle such problems [17,18,22].

The trails and SAWs consist of N steps (bonds) (i.e.,
N +1 monomers) and they start from the origin located
on an adsorbing impenetrable linear boundary on the
square lattice. A trail may intersect (or touch) itself only
once at an already visited site, but its bonds are not al-
lowed to overlap [14]. An attractive bulk energy e,
(e, <0) is assigned to each self-intersection and an at-
tractive surface energy e, (e, <0) is defined for each
monomer that is located on the surface. For SAWs an
attractive energy ¢, is defined for two nn nonbonded
monomers and an attractive surface energy ¢, is assigned
to each bond (rather than a monomer, as for trails) on
the surface. This nontraditional definition of the surface
interaction [26] is consistent with recent numerical stud-
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ies of this model [24,27].

Three different microscopic energies can be defined for
configuration i: the bulk energy E,~”=ebm,-”, where m? is
the number of self-intersections and nn pairs of mono-
mers for trails and SAWs, respectively; the surface ener-
gy, Ef =e;m{, where m; is the number of monomers or
bonds on the surface for a trail or a SAW, respectively;
and the total energy, E;=EP!+E;. Two partition func-
tions Z, are defined:

ZG=Z“exp(—E,~/kgT), )

where kg is the Boltzmann constant, T is the absolute
temperature, a =1 denotes the usual partition function,
while a=11 means that the summation is carried out
only over the subgroup of chains which also end on the
surface. The Boltzmann probability is

P,-B=exp(—E,~/kgT)/Z| . (2)
Thus, the average surface energy E; per €, reads

E,=¢ 'Y PPE}. 3)
i

It proves convenient to define the bulk and surface re-
ciprocal temperatures, K= — ep/kgT and K;=—¢;/
kgT, where their critical values are denoted by K#¥ and
K, respectively.

With the scanning method [28], a chain is generated
step by step with the help of transition probabilities which
are obtained by scanning all the possible chain continua-
tions in b future steps. Thus, the construction probability
P;(b) of chain i is known. For a small b, the future can
be scanned only partially; therefore a construction of a
chain may fail and in this case it is discarded. However,
P;(b) is biased, i.e., it is not equal to P? [Eq. (2)]; an un-
biased estimation F, of the exact free energies F,
= —kgTInZ, can be obtained from a sample of size ng,
generated with P;(b), where ng is the number of chains
attempted [29],

_ & {—Ei/ksT}
,,=—k3Tln n0—1 Z €Xp l(l)/ B

4
=1 P,-(,)(b) @

An appropriate equation can also be defined for the ener-
gy E; [Eq. (3)]. The bias can also be removed by a pro-
cedure due to Schmidt [30], in which an effectively small-
er sample (the accepted Boltzmann sample) is extracted
from the biased one. Thus, Maccept, the number of dif-
ferent chains accepted to the unbiased sample, serves as
the effective sample size for the importance-sampling re-
sults.

We generated with the scanning method trails of
length N =240 using b =4, and SAWs of N =200 with
b=3. In order to investigate the dependence of various
properties on NV, their importance-sampling values were
calculated and accumulated for the partial chains of
lengths 10,20, .... As in previous studies, the search for

K is based on the fact that with the scanning method,
results at many different temperatures can be obtained
from a single sample simulated at a given temperature.
The number of attempted chains for each model is rela-
tively large, no~40x 10%; however, the number of accept-
ed chains n,ccepr becomes significantly lower as NV in-
creases; for trails and SAWs of N=200 it is ~2.6
x10% and ~0.9x10%, respectively. The sample for
trails was generated at (Kj,K;)=1(1.086,0.690) where
the value of KF was taken from Refs. [17] and [18]
and results were calculated for the 30 temperatures
K;=0.650,0.653,...,0.737 and also at K, =1.082 and
1.090 which define the error bars for Ky. The sample for
SAWs was calculated at (Kg,K;)=1(0.658,0.810) (K
was taken from Ref. [22]) and results were obtained for
the 34 temperatures, K;=0.760,0.763,...,0.859 and
K, =0.654 and 0.662, which define the error bars for Kz .
The surface critical temperature K;* was determined
from the behavior of the surface energy E; [Eq. (3)] at
(Ky,K¥) [31,32],

E,~N*. (5)

Therefore, at this point one expects E;(2N)/E;(N) =2%
(if corrections to scaling are ignored). These ratios for
N =10,20, ... can be plotted as a function of K; where
the intersection point defines both K and ¢, [33]. In
Fig. 1 such a plot is presented for SAWs, where the re-
sults for V=10 and 20 and for 90 and 100 were omitted
since they show strong corrections to scaling and large
statistical errors, respectively [34]. A careful analysis
(which gives a larger weight to the results of the longer
chains) leads to the following values:

K*(SAWs) =0.805+0.012,
0s(SAWs) =0.483 +0.022 .
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FIG. 1. Plots of loglE;(2N)/E;(N)1/log2 vs the surface tem-
perature K, for SAWs of N =30,40, . . .,80 at the critical bulk
temperature Kj* =0.658. The intersection point defines both
K and ¢,.
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where the errors here and in the rest of the paper are
95%-confidence limits. The central value of ¢, is an aver-
age over the different results for ¢, obtained at K
=0.805 (the lines do not meet exactly at a point). In or-
der to obtain the error bars, results for K;¥ have been cal-
culated from similar plots based on a smaller number of
lines (e.g., N =30-80, 40-80, 50-80), not only at
KZ =1.086 but also at 1.082 and 1.090. The errors of ¢;
also take into account the error in the surface tempera-
tures. A similar analysis for trails leads to

KX (trails) =0.686 +0.012, ¢, (trails) =0.453 £0.025.

As expected, the above result, K*(trails) =0.686 is
significantly larger than the exact value 0.405... for a
random walk on the same lattice [26]. KJ(trails)
< KF(SAWs) is also expected due to the fact that it is
more difficult to attract a SAW to the surface than a
trail. It is important to note that the values of ¢, for the
two models are equal within the error bars and that both
are significantly larger than the value 3 ~0.38 obtained
by VSS for the 6’ model at the special point; therefore
our results do not support their conjecture that the 6" and
0 points belong to the same universality class.

The partition functions Z, [Eq. (1)] can be obtained by
Eq. (4) where at (K¢F,K.*) one expects

Zy=Bu"N""", (6)

where B, is a prefactor and u, the growth parameter, has
the same value as for tricritical chains in the bulk. In or-
der to calculate u and ¥, we used the same method as for
K¥ and ¢,. Thus, at (K¥,K.*) one obtains from Eq.
(6) (for a=1) 2Z(N)/Z(N)u™N=2". Therefore, one
can calculate for each pair (N,2N) the values of
2Z(2N)/Z(N)u" for different values of u, where the in-
tersection point of these lines should define both y; and
the correct u. In Fig. 2 such a plot is presented for trails
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FIG. 2. Plots of logl2Z,(2N)/Z(N)u™)/log2 vs the growth

parameter u for trails of N =20,40, . ..,100 at the critical tem-

peratures (Kj;*,K.*) =(1.086,0.686). The intersection point
defines both the correct x and 7.
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at the transition temperatures (1.086,0.686) for N
=20,30,...,100 and a well-defined intersection point is
observed. A detailed analysis for trails and SAWs leads
to

y)(trails) =1.265 £ 0.048,
u(trails) =2.9914 +0.0036 ;
71(SAWs) =1.265 +0.053 ,
u(SAWs)=3.213£0.009.

Again, the error bars have been obtained by carrying out
similar calculations at (K £ Dy, Kf + D), where D,
and D; denote the errors in the corresponding critical
temperatures. As expected, the above values of u are
equal, within the error bars, to those obtained for SAWs
and trails in the bulk and at the ordinary point. The
values of y; for the two models are equal within the error
bars to 1.265 which is significantly larger than the VSS
prediction % ~1.143. We also estimated the exponent
y11- As expected, the samples of chains that also end on
the surface are relatively small, which makes it difficult to
use the method described above for y; and u. Therefore,
y11 has been estimated from the values of u obtained
above and best fitting the data for F; by Eq. (6) over
various ranges of chain lengths (Vmin,/Vmax); the smallest
value of Npin is 20 and the largest values of N,y are 60
for SAWs and 80 for trails. Thus,

y11(SAWs) =0.72£0.06, 7,(trails) =0.78 £0.06.

The errors have been obtained by carrying out such cal-
culations at (Ky* &+ Dp,K* + Ds,u+ D,), where D,, is the
error in u. For each model, the above values of y; and
y11 satisfy, within the error bars, the Barber [35] surface
scaling relation, 2y, —y;;=y+v;, for the DS values
8 +4 =12 _171. For trails the fit is better than for
SAWs, where 2y;—y1=1.75%10, and 1.81 £ 10, re-
spectively. This probably stems from the fact that the
samples of chains that also end on the surface are larger
for trails than for SAWs [36].

In summary, this work provides the first Monte Carlo
estimation of critical exponents of trails and SAWs on
the square lattice at the special point. Our results for ¢;,
1, and 7, (like previous results for y and v in the bulk)
have been found to be the same, within the error bars, for
the two models. However, the present results do not sup-
port the VSS conjecture that the 8 and 8’ points belong to
the same universality class [37]. We hope that our study
will motivate further theoretical work in this still contro-
versial but exciting subject.
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