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Elastic Instability in a-Quartz under Pressure
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The elastic properties of c-quartz are studied as a function of pressure using both a classical intera-
tomic potential, and a first-principles pseudopotential approach. In both cases, we find that the structure
becomes mechanically unstable at about 30 GPa. Our results suggest that the amorphization of quartz
observed experimentally in this pressure range is triggered by the onset of a lattice shear instability. We
analyze the microscopic origin of the elastic softening, and relate it to the presence of an oxygen close-
packed cubic arrangement in the quartz high-pressure structure. A change in the Si coordination is

found to be intimately related to the shear instability.

PACS numbers: 61.50.Ks, 62.20.Dc, 62.50.+p

Pressure-induced amorphization has been observed re-

cently in a number of ionic crystals [1,2]. These solids vi-

trify when they are compressed at a sufficiently low tem-
perature to kinetically inhibit crystallization to the stable
high-pressure phase. Among the most studied of these
solids is a-quartz. At room temperature, and for pres-
sures up to 3 GPa, a-quartz is the stable form of silica.
At higher pressures, the quartz structure persists as a

metastable state, which gradually transforms to an amor-
phous form in the 25-35-CsPa range [3]. A similar
amorphization under hydrostatic compression was report-
ed for other oxides with the quartz structure such as [1,4]
A1PO4 and GeO~. Considerable interest currently exists
in such direct crystalline-to-amorphous transitions be-

cause of their technological potential for production of
bulk amorphous materials, as well as their fundamental
importance in geophysics. The driving force for these
transformations, however, is not well understood.

Amorphous materials are normally produced by cool-

ing a liquid sufficiently fast to prevent crystallization.
Pressure-induced amorphization is a more puzzling pro-
cess, and the resulting amorphous solids often exhibit
peculiar properties, such as the so-called memory ef-
fect." For instance, amorphous berlinite (AlPO4) ob-
tained by hydrostatic compression reverts to the quartz
structure, upon release of the pressure, with the same
crystal orientation as before the amorphization [1]. Sili-
ca remains amorphous when the pressure is released, but

the material is anisotropic, having retained the ' memory"
of the quartz crystallographic orientation [5]. Such
eAects suggest that the atomic disorder produced by pres-
sure in these solids derives from a relatively small pertur-
bation of the quartz crystalline structure.

The objective of this Letter is to identify the driving
force behind the amorphization of a-quartz. In pioneer-

ing studies by Tsuneyuki and co-workers [6] and Tse and

klug [7], molecular-dynamics simulations based on pair
potentials were used to investigate the eAect of pressure
on quartz. In both simulations, a structural transition oc-
curred near the experimental amorphization pressure.
Tsuneyuki and co-workers [6] observed a transition to a

sixfold-coordinated Si crystalline structure, and in some
of the simulation runs, to mixed fourfold-sixfold-
coordinated Si crystalline structures. Tse and Klug [7],
performing the simulation in a larger period supercell
with slightly different values of the potential parameters,
reported a transition to a "disordered" structure. Howev-

er, by simply following the time evolution of the structur-
al properties at the transition pressure [7], such studies
did not identify the physical driving force responsible for
the quartz amorphization. Here we focus on what

triggers the transition, and show why the crystal collapses
at that pressure. The sudden decrease of the Born elastic
modulus B =z( cl+|~cd) 3c3 2c(3, displayed in Ref. [7]
as a function of time at the critical pressure, and the
violation of the condition 82) 0 pointed out by Tse and

Klug appear to be the result of the transition rather than
its cause [8].

In our calculations, we follow the theoretical pressure
evolution of the quartz crystalline phase near and above
the amorphization pressure. This approach yields infor-

mation difficult or impossible to obtain through simula-

tions or experiments, and demonstrates that the quartz
crystalline structure is reaching the limit of its mechani-
cal stability, i.e., the spinodal boundary, near 30 GPa.
The study of the structural trends across the stability lim-

it allows us to clarify the microscopic process behind the
instability. To investigate the elastic properties of quartz
we use a classical force-field model as well as state-of-
the-art first-principles calculations. An ab initio deter-
mination of the elastic properties of an oxide with a struc-
ture as complex as quartz is a serious computational chal-
lenge. Such a calculation, however, is important to put
on a firmer ground. We use a simple ionic force-field
model to explain the main features of the instability
mechanism. In particular, the mixed covalent and ionic
character of the Si-0 bond in quartz is not captured by
classical pairwise forces, and a priori the covalent nature
of the bond may be important when dealing with the

quartz amorphization.
The first-principles calculations are performed within

the local-density functional (LDF) framework using the
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pseudopotential plane-wave method [9]. We used the
exchange-correlation potential of Ceperley and Alder
[10] as parametrized by Perdew and Zunger [11] and

norm-conserving soft pseudopotentials generated with the
method of Troullier and Martins [12]. The technical de-
tails have been given elsewhere [13]. Stresses and forces
are computed within the LDF using the reciprocal-space
formulation of Ref. [14]. In the present study, plane
waves up to a kinetic energy cutoff of 90 Ry were includ-
ed in the basis set in order to have sufficiently accurate
forces and stresses to determine the elastic properties.
The Brillouin zone integrations were performed with a
k-point mesh [15] (2x2x2) with displacement (0,0, 4 )
in reciprocal lattice units. This grid yields two special k

points for undistorted quartz. The k-point mesh chosen
here has the unperturbed lattice symmetry, which insures
a smooth transition from high-symmetry to low-sym-

metry lat tices.
The force-field calculations are based on the same

functional form for the interatomic potentials as em-

ployed in the simulation studies [6,7]. The two-body in-

teractions are described by a Coulomb term and a short-
range Born-Mayer correction. The results reported here
have been obtained with the parameter values for the pair
potentials proposed by Tsuneyuki, Tsukada, and Aoki
[16]. These potentials give a relatively good qualitative
description of the structural properties of a number of sil-
ica polymorphs [17]. For comparison, we also used the
set of parameters proposed by van Beest and co-workers
[16,18], and obtained results similar to those presented
here for the pressure dependence of the quartz elastic
properties.

For a solid under an initial hydrostatic pressure p~0,
care must be taken in defining the elastic constants. The
sets proposed in the literature are not unique [19]. The
elastic constants c;i calculated here are those defined
from the stress-strain relation [19], and that appear in

the equations of motion yielding the elastic-wave veloci-
ties. These c;i are related to the energy variation to
second order in the strain through [19]
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The first condition insures stability with respect to elastic
waves in the x-y plane, i.e., perpendicular to the quartz c
axis. The second condition is related essentially to dilata-
tions, and insures a positive compressibility, while the
third condition is associated with shear waves in planes
different from the x-y plane. Specifically, 83=0 corre-
sponds [22] to a soft transverse acoustic mode with prop-
agation and polarization vectors along one of the three
equivalent directions in a-quartz, e.g. , the x direction,
and along a direction y in the y-z plane at an angle

p =arctan( —c44/c14) to the c axis.
In Fig. 1, we show the theoretical pressure dependence

of the Bi, 82, and 83, for pressures up to 50 GPa. The
experimental values [23] at ambient pressure and 4 K are
indicated by arrows. The zero-pressure elastic constants
obtained from the pseudopotential calculations slightly
overestimate the experimental results, an effect we attri-
bute to the minimal k-point grid presently used in these
heavy computations. The zero-pressure values obtained
with the pair potentials by Tsuneyuki and co-workers un-

derestimate, instead, the experimental data shown in Fig.

A symmetric strain tensor e is assumed in Eq. (I), and
we use Voigt's notation [20].

/I p
= e I + e2+ E3+ &2&3+ E3e I
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is the relative volume change to second order in the
strain.

A necessary condition for a crystal to be mechanically
stable is that the elastic-wave energy be positive, or
equivalently, that the elastic constant matrix be positive
definite (Born's criterion). For a trigonal structure, this
results in the following conditions [21]:

0 10 20 30 40 50

P (GPa)

FIG. l. Pressure dependence of the Born elastic moduli (a)
81=c11—ic12i, (b) 82=( +c11)Cc3312—2c)3, and (c) 83 (c11—c12)c44 —c)4 for a-quartz. The result of the pair-potential
and pseudopotential calculations are indicated by open and solid
circles, respectively. The curves are guides to the eyes.
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1. However, the same general pressure dependence of the
elastic constants is obtained with the pseudopotential and
pair-potential calculations. The first two moduli, 8] and
B~, are positive in the whole pressure range shown in Fig.
1, and increase at high pressure. The change in the shear
modulus 8[ is relatively small. B~, however, increases
drastically, changing by essentially 1 order of magnitude
from ambient pressure to 40 GPa. The striking increase
in B~ is related to the decrease with pressure of the
quartz compressibility. It reflects the increasing stiffness
[24] of the Si-0-Si angle due to the Si-Si repulsion, when

the bond bending approaches 120'.
The quartz instability is associated with 8&. In Fig. 1,

83 decreases with pressure, and becomes negative at
about 30 GPa, i.e. , above 23 GPa using the empirical ap-
proach and below 35 GPa from the ab initio calculations.
Using the potentials by van Beest and co-workers, 83 is

found to vanish at about 23 GPa. The two sets of intera-
tomic potentials lead thus to an elastic instability at
about the same pressure, which is responsible for the
structural transformation of quartz observed in the
molecular dynamics simulations [6,7]. This instability is

associated with vanishing acoustic velocities, and leads to
imaginary frequencies near I in the quartz phonon spec-
trum above the critical pressure. Large supercells are
needed in simulations in order to reproduce the amorphi-
zation, and not the structural transformations reflecting
an artificial periodicity. We note that contrary to v hat

might be extrapolated [3] from the low-pressure behavior
of the elastic constants, neither c66= 2 8[ nor c44 van-

ishes in the region of quartz amorphization (25-30 GPa).
The elastic constant c66 increases above 10 GPa, while c44

decreases at high pressure, but vanishes only at about 50
GPa, i.e. , far above the instability shown in Fig. l(c).
Thus, vanishing t.-6|, or c4q is not the direct cause of the in-

stability

ty.
The pair-potential and pseudopotential approaches

differ somewhat quantitatively with respect to the pres-
sure scale, but reveal the same general microscopic pro-
cess behind the quartz instability. The violation of the
stability condition in Fig. l(c) occurs when the oxygens
in quartz approach a closed-packed body-centered-cubic
(bcc) configuration [25]. This packing is the dominant
mechanism which controls the structural behavior of
quartz at high pressure. Since this oxygen cubic packing
under pressure is a pure "Madelung effect" resulting
from the minimization of the oxygen-oxygen repulsion, it

appears more clearly why the simple pairwise-force model

gives a correct qualitative description of the quartz high-
pressure behavior and elastic instability.

The angle P between the z axis and the t' axis yielding
the soft or softest shear t,.;, is about 40 at the transition,
and decreases slightly at higher pressures. This angle sat-
urates at about 35', when the bcc packing is essentially
completed (P = 50 GPa). The corresponding shear

ch„-.

ass a simple interpretation in the bcc lattice. In Fig. 2

(upper section). we show the connection between the
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f'IG. 2. Soft shear f. „;,on the oxygen body-centered-cubic
(bcc) sublattice in the quartz high-pressure structure (upper
panel). The Si are not equivalent in the small (Si02) oxygen
bcc cells, and 27 of these cells are needed to form a periodic cu-
bic cell of quartz. The hexagonal basis vectors a, b, and c of

quartz correspond to two face diagonals and a body diagonal of
the cube, respectively. The calculated energy relative to the un-

strained configuration is given as a function of e„-.(lower panel)
f'or different volume ratio V/V, =0.96, 0.92, 0.87, and 0.83, cor-
responding to pressures of 27, 33, 43, and 53 GPa, respectively.

quartz hexagonal basis vectors (a, b, c) and the oxygen
cubic cell. For p=arccos(42/3) = 35.3', the shear e„-,is
ideally parallel to one of the three sets of planes forming
the faces of the cube. The x and ~~ directions are face di-

agonals of the cube. The effect of the soft shear |.'„;,is to
elongate the cubic sublattice, as illustrated in Fig. 2. In

the lower section of Fig. 2, we display the change in the
total energy from the pair-potential calculations as a

function of the |.„-,strain on the quartz unit cell. The cal-
culations are performed at constant volume, and the re-

sults are shown for different volume ratios V/V, , where

V, =600 a.u. is the critical unit cell volume for the quartz
stability in the pair-potential calculation. For pressures
above the critical pressure, a well clearly develops at
finite strain |.„-,, showing the instability of quartz against
the elongation of the oxygen cubic sublattice.

In Fig. 3, we compare f'or V/V, =0.9l the microscopic
atomic arrangement, obtained from the ab init) o calcula-
tions, in the unstrained quartz structure and in the
strained structure where f,.;, =0.3. Microscopically, the
effect of e„-.is to open (close) the 0-Si-0 angles having

the 0 atoms along (perpendicular) to the elongation axis.
Such a deformation of the silica tetrahedron produces a

displacement of the Si towards one of the nearby octahe-
dral sites in the bcc lattice. The same effect is also found

in the pair-potentials calculations. The displacement of
the Si towards the octahedral site increases with e,.;, and

pressure. In both quartz-Ge02 and -SiO~, there is experi-
mental evidence [26] for a change from a fourfold to a
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FIG. 3. Projection of the atomic arrangement in the quartz
high-pressure structure for V/V, =0.91 (left-hand side), and in

the strained structure where a shear e„y=0.3 is applied on the
quartz unit cell (right-hand side). The high-pressure bcc model
of quartz and the tetrahedral and octahedral sites in the oxygen
bcc lattice are illustrated in the upper section. The strain e„y
opens the 0-Si-0 angles with the 0 atoms along the elongation
axis. This produces a displacement of the Si towards one of the
nearby octahedral sites.

sixfold cation coordination above the amorphization pres-
sure. We find this coordination change is intimately re-
lated to the shear instability.

In conclusion, using an ab initio pseudopotential ap-
proach we have shown that the experimentally observed
amorphization of quartz occurs when the structure ap-
proaches a spinodal boundary associated with an elastic
instability. Using a simple ionic model, we have analyzed
the microscopic mechanism behind this instability, and
sho~n its connection with a change in the Si coordina-
tion. Our calculations indicate that a shear instability
can be the driving force toward a metastable crystal col-
lapse, such as the quartz amorphization. This transfor-
mation is thus closely related to shear-melting [27] and
martensitic [28] transitions.
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