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+'e describe the results of studies of a random-anisotropy Blume-Emery-Gri5ths spin-1 Ising model

using mean-field theory, transfer-matrix calculations, and position-space renormalization-group calcula-
tions. The interplay between the quenched randomness of the anisotropy and the annealed disorder in-

troduced by the spin-1 model leads to a rich phase diagram with a variety of phase transitions and reen-
trant behavior. Our results may be relevant to the study of the phase separation of He- He mixtures in

porous media in the vicinity of the superfluid transition.

PACS numbers: 05.50.+q

In recent years, there has been considerable interest in

understanding the eAects of randomness on phase transi-
tions [I]. In this Letter, we study a model system with a
novel interplay of quenched randomness and annealed
disorder. A rich phase diagram is found including reen-
trant behavior, an example of order from disorder [2].
Our results are obtained using mean-field theory comple-
mented by transfer-matrix and real-space renormaliza-
tion-group calculations and are applicable to the phase
separation of He- He mixtures in aerogel [3] (an exam-
ple of a porous medium) in the vicinity of the superfluid
transition of He.

We study a Blume-Emery-Griffiths (BEG) [4-6] spin-
1 model described by the Hamiltonian

H = Jgs;SJ K—QS sf+a—~;S,
(ij & (ij & i

where S;= —1,0, 1 and K=K33+K44 2K34 with K,p
being the interaction energy between 'He-~He atoms
(a,P=3,4). Since K,tt is almost independent of a and P,
the physically interesting case [4] corresponds to K-O.
5; is a site-dependent field randomly distributed with a
probability density P(h;) on each site. For simplicity we
choose

an infinite-range version of (1),
r

H = —g —StS~+ —S; SJ~ +gh;S; . (3)

——
J dAP(h)In[I +2e~ "v cosh(PJm)], (4)

where m =((S;))z and q =((S; ))z are the quenched aver-

ages of the equilibrium values of the two order parame-
ters (S;) and (S; ) that minimize f. Setting the first
derivative of f with respect to m and q equal to zero, one
finds that m =0 is always one solution with the corre-
sponding value of q given by

q =(b ')z—= dhP(b)b (5)

The pore-grain interface of the aerogel is highly correlat-
ed. The infinite-range approximation may serve to cap-
ture the eff'ects of such correlations. Following Schneider
and Pytte [7], the quenched free energy density of (3) is

given by

Jm Kq2'2

P(h;) =pb(A; —hp)+(l —p)b(A; —Al) . (2)
where b= I+e~t v /2. When m is nonzero,

The spin states S;=~1 denote He and S;=0 He
atoms with the superfluid transition corresponding to
symmetry breaking between the ~ 1 states. The fraction

p of the sites with field ho corresponds to the pore-grain
interface of aerogel and for the case that He (S;=+ 1)
prefers to be at the interface, hp &0. (For simplicity, we
ignore the grain space in our analysis. ) hl is a bulk field
that controls the total number of He (S; =0) atoms.
Note that, unlike the random-field Ising model [ll, the
random field, here, does not break the ~ symmetry.

The mean-field approach entails the exact solution of

q =mcoth(PJm)

independent of the randomness, indicating that transi-
tions take place in both q and m.

Setting K=0, the zero-temperature phase diagram is
shown in Fig. 1. There are four phases, labeled 1-4, with
order parameters ml =1, m2=p, m3=1 —p, and m4=0
and q; =m;, i =1,4. We focus on the region hp(0 allow-
ing the zero-temperature phases 1 and 2. For h~/J
& (I+p)/2, the entire system is magnetized at T=O,

i.e., filled with superfluid He whereas for Al/J ) (1
+p)/2, superfluidity occurs only at the pore walls with
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FIG. 1. T=O phase diagram in the h /oJh~/ Jplane.

He filling the interior of the pores. We will now proceed
to study the behavior at nonzero temperatures.

Using Eq. (6) for the free energy, first-order transitions
occur at the values of parameters such that Minf(m, q)
=f(m~, q~) =f(m2, q2) with (m~, q~)e(m2, q2). A nec-
essary condition for continuous transitions is that
I)"f/Bm"=0, n =1, . . . , 2I —1, I ~ 2 with I) 'f/Bm '& 0
and q given by Eq. (6) for nonzero m. For I =2 and the
m =0 case, f(m) is even and Bf/jm =83f/Bmi=o. Set-
ting I) f/8m ( -ii=0, one finds

For fixed 50/T, K/T, and p, this corresponds to a line in

the T/J-A~/J plane. Noting also that q =1 —x, where x
is the concentration of He, Eq. (8) predicts that in the
T/J-x plane, the phase boundary is simply given by
T/J= 1

—x and is independent of the disorder. We have

carried out an improved mean-field analysis [8] and find

that contrary to the results of the simple approach, the
phase boundary is indeed weakly dependent on the disor-
der. Further, the condition that I) f/8m ~

=o & 0 is

equivalent to

For the pure system (p =0), this condition reduces to

(1o)

Thus, a tricritical point would be present at q, =
3 if

I) f/Bm ~ oq-q &0 and no first-order transition inter-
venes leading to a critical end point. Indeed, as pointed

(7)

which on combining with Eq. (5) shows that independent
of the disorder, the continuous transitions occurring at
m =0 are given by

out by Blume, Emery, and GriSths [4], it is remarkable
that the experimental q, at which a tricritical point has
been observed is 0.331 + 0.005.

Generic phase diagrams, predicted by the mean-field
analysis, are shown in Fig. 2. The solid line denotes the
continuous transition occurring at T/J=q, whereas the
dashed line denotes the locus of coexistence where a

first-order transition takes place. C is a critical point, and
the points A and 8 are critical end points. [C is deter-
mined by setting the first three derivatives ol' f eq'ual to
zero and by solving for PJ, PA, and mao with the q-m re-
lationship given by Eq. (6).j The inset of Fig. 2 shows the

phase diagram for the case when ho is large and negative
and p is not too small (e.g. , do= —3, p =0.3). The first-
and second-order lines miss each other. In this case, on

decreasing the temperature from a large value, the order-
ing sets in through a continuous transition to a superfluid
phase characterized by m&0. On further cooling, a
phase separation between 5 =1 and S=O takes place
through a first-order transition, unless one is at the criti-
cal concentration x,

We now turn to a discussion of the phase diagrams in

Figs. 2(a) and 2(b). For specificity, we consider five pos-
sible paths labeled (1)-(5), each with a constant h~/J. A

similar (simpler) analysis can be readily carried out along
constant He concentration (x) trajectories. We begin

by noting that the portions of the h~/J axis (0, (l+p)/2)
and ((1+p)/2, ~) are mapped onto the points (T=o,
x=0) and(T=O, x =1 —p) respectively in the x Tplane. -

The five trajectories are shown in both planes in Fig. 2.
Let us consider following each of the trajectories increas-

ing the temperature T from zero.
(1) At T=O, the ordered phase with m=p and q

=1 —x =p exists on a fraction p of the sites correspond-

ing to the pore-grain interface, whereas the interior of the

porous medium is filled with He. On increasing the tem-

perature, this ordering goes away as the trajectory crosses
the line BD.

(2) The ground state has m =q =1 —x =1, i.e., no 'He
is present. The trajectory crosses the phase transition
lines 4 times on increasing the temperature. The first in-

tersection is with the first-order line corresponding to a

phase separation between He and He. In the resulting

mixture, the He is segregated near the aerogel and is

superfluid whereas the He jumps in concentration from
x-0 to x —I —p and fills the interior of the porous
medium. On increasing the temperature further, the

superfluidity near the aerogel is destroyed through inter-
section with the line BD. Reentrant behavior is found on

increasing the temperature further. Thermal fluctuations

cause the He in the interior to be partly substituted by
He which undergoes a superfluid transition. A further

increase in the temperature leads finally to a disordered
state.

(3) The ground state is as in (2) above. On raising the

temperature, the intersection with the first-order line
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FIG. 2. Schematic phase diagrams for hp~O in the (a) x-
TlJ plane and (b) h~/J-TIJ plane. The dashed line denotes a
first-order transition and the solid line a continuous transition.
9 and B are critical end points, and C a critical point. Insets:
Representation of how the phase diagram is modified when ho is

large and negative and p is large. The phase diagrams are not
drawn to scale to enable easy viewing of the key features.

causes a transition to a normal fluid rich in He. On fur-

ther heating, as before, there is reentrance characterized

by a superfluid phase that eventually disappears at an

even higher temperature.
(4) At variance with (3) above, the first-order transi-

tion takes place entirely within an ordered phase —the

jump in magnetization corresponds to a superfluid He
rich mixture replaced by a superfluid He poor mixture.
On further heating, the superfluidity is destroyed through
a continuous transition.

(5) There is now only one transition at which the
superfluidity goes continuously to zero.

The analysis so far has been based on an exact solution
of an infinite-range model. The improved mean-field

analysis [8] gives a nonzero percolation threshold (p,
-0.29 in a simple cubic lattice) and the reentrant
phenomenon is confirmed even when uncorrelated ran-
domness is considered [9].

In order to confirm how well the mean-field predictions
are qualitatively realized in low dimensions, we have car-
ried out exact transfer-matrix calculations [9] in two di-
mensions for square systems containing up to 100 sites.
We have also extended the position-space renormaliza-
tion-group (PSRG) calculations of Berker and Wortis in

two dimensions to the random case [9]. Briefly, an exact
enumeration of all possible anisotropies is carried out and

mapped into a renormalized bimodal distribution with
efl'ective p', hp, and hl such that the three lowest mo-
ments of the actually obtained distribution and the
effective bimodal distribution are equal [10]. Both the
transfer-matrix and PSRG calculations are in qualitative
accord with the mean-field predictions. There are two
key differences: First, in d=2 for sufficiently small p
(p (p, ) the line BD is missing since an ordered phase is

not sustained by these sites. For the infinite-range model,

p, is effectively zero so that the line BD is present. Fur-
ther, as in the BEG calculations, our calculations have
dealt with Ising spins (and not xy spins). Thus the pres-
ence of line BD would be dependent on whether the
pore-grain interface can sustain a superfluid phase.
Second, studies of the BEG model with random bonds by
Berker [11] have shown that randomness can have a pro-
found effect on the nature of the phase transition in two
dimensions. The prediction of this analysis is that
symmetry-breaking first-order transitions such as line AB
in Fig. 2(b) are converted to continuous transitions and
non-symmetry-breaking first-order transitions [all other
dashed lines in Fig. 2(b)] are completely eliminated. Our
d=2 studies are in agreement with the latter prediction.
We have not attempted to determine whether the transi-
tion is first order or not.

Our analysis should also be valid for the other physical
systems described by the BEG model [6].
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