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Propagation and Guiding of Intense Laser Pulses in Plasmas
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A two-dimensional, axisymmetric, relativistic fluid model describing the propagation of intense laser
pulses in plasmas is formulated and numerically evaluated. Relativistic guiding is ineffective in prevent-
ing the diffractive spreading of short laser pulses and long pulses become modulated due to relativistic
and wake-field effects. Laser pulses can be propagated over many Rayleigh lengths by use of a pre-
formed plasma density channel or by tailoring the pulse profile. Ultrahigh axial electric fields can be
generated behind the laser pulse.

PACS numbers: 52.40.—w, 52.35.Mw

The propagation of intense laser pulses in underdense
plasmas may have widespread importance in a number of
areas including laser-plasma acceleration [1-3], x-ray
lasers [4], harmonic generation [2,3,5,6], and inertial
confinement fusion [7]. The recent development of com-
pact terawatt lasers [8] capable of providing short pulses
(+1 ps) of ultrahigh intensities (+10' W/cm ) and
moderate energies (+10 J) gives additional impetus to
these applications. In vacuum, the focused laser pulse
propagation distance is limited to a few Rayleigh lengths,
Zg = 7CPLp/k, where rqo and X are the minimum spot size
and wavelength of the laser, respectively. In plasmas,
nonlinear and relativistic eA'ects associated with intense
laser fields can significantly modify the propagation
characteristics of the laser [2,3,9-11]. The large ratios
between the laser wavelength and other characteristic
longitudinal lengths in the system, i.e., laser propagation
distance, laser pulse length, and plasma wavelength,
make the direct numerical integration of the dynamical
equations over extended distances impractical.

In the following, a fully nonlinear, relativistic, two-
dimensional axisymmetric laser-plasma propagation mod-
el is formulated and numerically evaluated for laser
pulses of ultrahigh intensities and arbitrary polarizations.
The formulation has a number of unique features which

allow for numerical simulations to be carried out over ex-
tended laser propagation distances. The appropriate
Maxwell fluid equations are recast into a convenient form

by (i) performing a change of variables to the speed of
light frame, (ii) applying the quasistatic approximation
(QSA), (iii) expanding in two small parameters (which
are independent of the laser intensity), and (iv) averaging
over the short spatial scale length, i.e. , the laser wave-

length. The resulting equations are here used to study
the (i) failure of relativistic focusing for short laser
pulses, (ii) modulation of long laser pulses by wake-field
etTects, (iii) optical guiding of tailored laser pulses, and
(iv) use of plasma density channels to guide intense laser
pulses.

The plasma is modeled using relativistic cold fluid

equations. The momentum and continuity equations
are du/dt =eV&+ r)a/r)t —eu x (VX a)/y and r)(py)/r)r
+eV (pu) =0, respectively, where a = ~e~A/moc

-' and V~&+ rl p/Qt, =ke(yp —p" ), (1 b)

P=~e~4/mac are the normalized vector and scalar po-
tentials, respectively, u=p/moc is the normalized fluid

momentum, p=n/yno, n is the electron density, no is the
ambient density, y=(1+u )' is the relativistic factor,
and —

~e
~

and mo are the electron charge and rest mass,
respectively. The momentum and continuity equations,
together with the wave equation and Poisson's equation
for a and p, form a complete description of the laser-
plasma interaction. In the following, the Coulomb gauge
is used (V a =0), the ions are assumed stationary, and
thermal efl'ects are neglected [2].

The full set of equations is recast into speed of light
coordinates by changing variables from z, t to (=z —er

and r = t, where z and t are laboratory frame variables
denoting the distance along the laser propagation axis
and time, respectively. The QSA [2] is then applied.
Here, the electron transit time through the laser pulse,
which is equal to the laser pulse duration, T;I, is assumed
to be short compared to the laser pulse evolution time, r,„

which is determined by the pulse diffraction time,
—Zz/e, or by the pulse dispersion time, -co/ro„, where
co is the laser frequency and co& =(47rno~e~'/mo) ' is the
ambient plasma frequency. In the QSA the electrons ex-
perience essentially static fields, allowing the r)/8r deriva-
tives to be neglected in the fluid equations, but not in the
wave equation. The resulting equations are expanded to
first order in the parameters e~

= I/krL &&1 and eq =k„/k
«1, where k =2'/X, k~ =2m/k~ =ro~/c, and rq is the
laser spot size. All the fluid and field quantities are ex-
panded in slow and fast terms, i.e. , Q =Q, +Q/. The fast
quantities are of the general form Qf 2 Qf(r, g, r )
xexp(imk()+c. c., where m =1,2, 3, . . . and QI is com-
plex and slowly varying in g. Within this representation,
the nonlinear Auid equations are averaged over the laser
wavelength in the (g, r ) frame. The ( averaging allows
for all the laser-plasma response quantities to be evalu-
ated on the slow spatial scale, i.e., Xz or c~I, permitting
solutions over extended propagation distances.

The resulting equations describe the slowly varying
components of the fluid and field quantities:

V~a =kp pu —e1(Vy)/Bg, (1a)
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(1c)nl(u —a)/nip =V(r-C),
p(1+ y)]/tl(=v . pu L)
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