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Propagation and Guiding of Intense Laser Pulses in Plasmas
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A two-dimensional, axisymmetric, relativistic fluid model describing the propagation of intense laser
pulses in plasmas is formulated and numerically evaluated. Relativistic guiding is ineffective in prevent-
ing the diffractive spreading of short laser pulses and long pulses become modulated due to relativistic
and wake-field effects. Laser pulses can be propagated over many Rayleigh lengths by use of a pre-
formed plasma density channel or by tailoring the pulse profile. Ultrahigh axial electric fields can be

generated behind the laser pulse.

PACS numbers: 52.40.—w, 52.35.Mw

The propagation of intense laser pulses in underdense
plasmas may have widespread importance in a number of
areas including laser-plasma acceleration [1-3], x-ray
lasers [4], harmonic generation [2,3,5,6], and inertial
confinement fusion [7]. The recent development of com-
pact terawatt lasers [8] capable of providing short pulses
(<1 ps) of ultrahigh intensities (X 10'® W/cm?) and
moderate energies (X 10 J) gives additional impetus to
these applications. In vacuum, the focused laser pulse
propagation distance is limited to a few Rayleigh lengths,
Zg =nrfo/A, where rio and A are the minimum spot size
and wavelength of the laser, respectively. In plasmas,
nonlinear and relativistic effects associated with intense
laser fields can significantly modify the propagation
characteristics of the laser [2,3,9-11]. The large ratios
between the laser wavelength and other characteristic
longitudinal lengths in the system, i.e., laser propagation
distance, laser pulse length, and plasma wavelength,
make the direct numerical integration of the dynamical
equations over extended distances impractical.

In the following, a fully nonlinear, relativistic, two-
dimensional axisymmetric laser-plasma propagation mod-
el is formulated and numerically evaluated for laser
pulses of ultrahigh intensities and arbitrary polarizations.
The formulation has a number of unique features which
allow for numerical simulations to be carried out over ex-
tended laser propagation distances. The appropriate
Maxwell fluid equations are recast into a convenient form
by (i) performing a change of variables to the speed of
light frame, (ii} applying the quasistatic approximation
(QSA). (iii) expanding in two small parameters (which
are independent of the laser intensity), and (iv) averaging
over the short spatial scale length, i.e., the laser wave-
length. The resulting equations are here used to study
the (i) failure of relativistic focusing for short laser
pulses, (ii) modulation of long laser pulses by wake-field
effects, (iii) optical guiding of tailored laser pulses, and
(iv) use of plasma density channels to guide intense laser
pulses.

The plasma is modeled using relativistic cold fluid
equations. The momentum and continuity equations
are du/dt =cV¢+09a/9t —cux(Vxa)/y and 9(py)/ot
+¢V- (pu) =0, respectively, where a=|e|A/moc’ and
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cz)=[e|<l>/mgc2 are the normalized vector and scalar po-
tentials, respectively, u=p/mgc is the normalized fluid
momentum, p=n/yny, n is the electron density, ng is the
ambient density, y=(1+u?)"? is the relativistic factor,
and — |e| and my are the electron charge and rest mass,
respectively. The momentum and continuity equations,
together with the wave equation and Poisson’s equation
for a and ¢, form a complete description of the laser-
plasma interaction. In the following, the Coulomb gauge
is used (V-a=0), the ions are assumed stationary, and
thermal effects are neglected [2].

The full set of equations is recast into speed of light
coordinates by changing variables from z,z to {=z —ct
and v =¢, where z and ¢ are laboratory frame variables
denoting the distance along the laser propagation axis
and time, respectively. The QSA [2] is then applied.
Here, the electron transit time through the laser pulse,
which is equal to the laser pulse duration, 7, is assumed
to be short compared to the laser pulse evolution time, 7.,
which is determined by the pulse diffraction time,
~Zg/c, or by the pulse dispersion time, ~o/w}, where
o is the laser frequency and w, =(4nngle|*/my) 172 is the
ambient plasma frequency. In the QSA the electrons ex-
perience essentially static fields, allowing the 8/07 deriva-
tives to be neglected in the fluid equations, but not in the
wave equation. The resulting equations are expanded to
first order in the parameters & =1/kr, <1 and &;=k,/k
<1, where k=2n/A, k,=2n/A,=w,/c, and r is the
laser spot size. All the fluid and field quantities are ex-
panded in slow and fast terms, i.e., Q =Q;+ Q. The fast
quantities are of the general form Q= %AQ/(r.C.r)
xexp(imk{) +c.c., where m=1,2,3,... and Qy is com-
plex and slowly varying in £. Within this representation,
the nonlinear fluid equations are averaged over the laser
wavelength in the (£, 7) frame. The ¢ averaging allows
for all the laser-plasma response quantities to be evalu-
ated on the slow spatial scale, i.e., X, or ¢t ., permitting
solutions over extended propagation distances.

The resulting equations describe the slowly varying
components of the fluid and field quantities:

Via=kjpu—09(ve)/a¢, (1a)
Vio+820/8 =k} (yp—p ), (1b)
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d(u—a)/oc=v(y—o¢), (1c)
alp(1+y)1/8¢=V, (pu,), (1d)

where the subscript s, denoting the slow component of the
quantity, has been dropped, p©@ =n®/ny, n @) is the
initial plasma density profile prior to the laser interaction
which may be a function of radial position, and y =¢ —a,
is the wake potential. Equations (1a)-(1d) represent, re-
spectively, the slow components of the wave, Poisson’s,
momentum, and continuity equations.

In obtaining Eq. (lc), the identity Vx(u—a) =0,
showing the irrotational nature of the ponderomotive
flow, was used. It can be shown that the quantity y
—u, —y is an invariant which is set equal to unity, i.e.,
its value prior to the arrival of the laser pulse. The slowly
varying component of the relativistic factor is

y=0+y) 'l1+ul+a/]22+U+y)?/2, )

where a linearly polarized laser pulse with amplitude ||
is assumed throughout this paper. The transverse com-
ponent of the laser radiation field is af=ﬁf(r,§,r)
xexp(ik$)/2+c.c., where a; is the complex, slowly vary-
ing amplitude which satisfies the parabolic (reduced)
wave equation,

(Vi+2c_lka/ar)5f=kp2péf. (3)

Within the QSA, the self-consistent, slowly varying equa-
tions in the (£, t) variables, describing the laser-plasma
interaction, to first order in ¢ and ¢, are given by Egs.
(1)-0).

Equations (1a)-(1d) can be combined to yield a single
equation for y in terms of ]é/|2 of the form 8%y/d¢?
=G(y,|as|?), where G is an involved function. The
equation for y is obtained by noting that p=(p©

T/ 7y

FIG. 1. Laser spot size r, (at {=—L/2) vs propagation dis-
tance normalized to the Rayleigh length, ct/Zg, for (a) vacu-
um diffraction, (b) an ultrashort pulse with L =2,/4, (c) a short
pulse with L =2,, (d) a shaped pulse, and (e) a channel-guided
pulse. The spot size is normalized to the plasma wavelength
Ap =0.03 cm.

+k, 2Viy)/(+y) and u, =p 'k, 2V, dy/d{. Note
also that the refractive index is solely a function of y
through p, i.e., ng =1 —k?2p/2k%. Equation (3) together
with 82y/8¢*=G completely describe the 2D-axisym-
metric laser-plasma interaction. The wake potential y is
related to the axial electric field E, of plasma response
(wake field) by E, = —8y/d¢, where E, =|e|E./moc?.

Equations (1)-(3) reduce to models which have been
previously studied, i.e., the broad pulse limit (V,— 0)
[2] and the axially uniform pulse limit (8/8¢— 0) [10].
Reference [2] showed theoretically that relativistic guid-
ing, which requires laser powers (in units of GW)
P= Pgiv=17(1,/1)%, does not occur for short pulses,
ety <A /(1+]as]¥2)"2 For short pulses the plasma
cannot collectively respond to modify the refractive index.

Simulations of short pulse propagation confirm the pre-
dictions of Ref. [2]. The results are shown in Fig. 1 for
the parameters A,=0.03 cm (no=1.2x10'" cm ™),
r. =A, (Gaussian radial profile), A =1 ym (Zg =28 cm),
and P=P.y. The initial axial laser profile is given by
|a,(O)| =aosin(—xL/L) for 0< —¢{<L=ct;, where
ap=0.9 for the above parameters. Simulations are per-
formed for two laser pulse lengths, L =1, (r, =1 ps) and
L=Mx,/4 (r,=0.25 ps). The initial normalized laser in-
tensity, |as|2, is shown in Fig. 2 for L =A,. The spot size
at the pulse center versus propagation distance ct is
shown in Fig. 1 for (a) the vacuum diffraction case, (b)
the L=A,/4 pulse, and (c) the L=A, pulse. The L
=A,/4 pulse diffracts almost as if in vacuum. The L =1,
pulse experiences a small amount of initial guiding before
diffracting.

The wake field generated by the finite rise time of a
long pulse can modulate the pulse structure. Consider a
long laser pulse in which the body of the pulse has a con-
stant amplitude with P =P and, therefore, should be
relativistically guided. The amplitude of the wake field
generated by the front of the pulse is determined by the
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FIG. 2. Normalized laser intensity |d7|2 in the speed of light
frame ({,z) at =0 for the parameters ao=0.9, L =r; =1,
=0.03 cm, and A=1 um. In the (£,7) frame, the plasma flows
from right to left.
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FIG. 3. Normalized laser intensity |ﬁf|2 at ct =2Zg for a
long pulse showing modulation.

rise time. The wake field, which consists of a plasma den-
sity modulation of the form &n=8no(r)cos(k,¢{), mod-
ifies the plasma’s refractive index [11]. In regions of a lo-
cal density channel, i.e., where 9 6n/9r > 0, the radiation
focuses. In regions where 96n/dr <0, diffraction is
enhanced.

Pulse modulation is illustrated by a simulation of
a long pulse (a long rise, Lise =>51,, followed by a long
flattop region, Lga=5X,) with P=P.y (ap=0.09, r,
=10A,, A, =0.03 cm, and A =1 pm). Simulations indi-
cate that for P = P, an unstable wake field is excited at
the front of the pulse and rapidly modulates the pulse
profile. Figure 3 shows the pulse modulation, where |4/]|?
is plotted at ¢t =2Zp for the above initial parameters.

(a)

FIG. 4. Normalized laser intensity |d,|? at (a) =0 and at
(b) ¢t =242Zg for a tailored pulse.
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FIG. 5. Normalized laser intensity |d,|% at ct =10Z for the
laser pulse of Fig. 2 propagating in a plasma density channel.

At high intensities, i.e., ad>1, the modulation is re-
duced.

A tailored laser pulse can propagate many Rayleigh
lengths without significantly altering its original profile.
Consider a long laser pulse, ct;>>X,, in which the spot
size is tapered from a large value at the front to a small
value at the back, so that the laser power, P~r2|as|? is
consistent throughout the pulse and equal to P.j. The
leading portion (<1,) of the pulse will diffract as if in
vacuum [2]. However, since r; is large at the front of the
pulse, the Rayleigh length is also large. Hence, the local-
ly large spot size allows the pulse front to propagate a
long distance, whereas the body of the pulse will be rela-
tivistically guided. Also, since |4/|% increases slowly
throughout the pulse, detrimental wake-field effects are
reduced.

Figure 4(a) shows the initial profile of a tailored pulse
in which léfl increases from 0.09 to 0.9 over a length
Liise=2%,. Here, P =P throughout the pulse, Iéflr[,
=094, (A,=0.03 cm, A=1 pm), which implies a de-
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FIG. 6. Plasma electron density n/no at ¢t =10Zg for the
channel-guided case.
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FIG. 7. Axial electric field E, at ct =10Zg for the channel-
guided case.

crease in r; from 101, to A,. At peak intensity the vacu-
um diffraction length is Zg =28 cm. The effectiveness of
pulse tailoring can be seen by the r; (ct) plot in Fig. 2(d)
and in Fig. 4(b), where a plot of |a/|? at ct =24Z
demonstrates that the pulse is distorted but largely intact.
At ct =24Z; =6.8 m, the peak axial electric field of the
wake field behind the pulse is £, =1.3 GeV/m.

A preformed plasma density channel can guide short,
intense laser pulses. In the weak laser pulse limit,
|as|2<1, the index of refraction is given by ng=1
-—k,,zp(O)/Zk 2. Optical guiding requires dng/dr <0,
hence, a preformed density channel, 7@ (r) =nop@(r),
may prevent pulse diffraction. Analysis of the wave
equation in the weak pulse limit indicates that a parabolic
density channel will guide a Gaussian laser beam provid-
ed that the depth of the density channel [3] is An
=1/nr.r, where An=n9@(;1)—n () and r. is the
classical electron radius.

A simulation of channel guiding is shown in Figs. 5-7
for a laser pulse with the initial conditions of Fig. 2 prop-
agating in a parabolic density channel with An=1.3
x10" ¢cm ™ and n@(0)=1.2x10'® ¢m ™3 Figure 5
shows the laser intensity at ¢t =10Zg. The laser pulse
shows some distortions but remains essentially guided.
Guiding is confirmed by the r; (ct) plot in Fig. 2(e). The
rr(ct) oscillations indicate a slight mismatch between
the laser and channel parameters. This is caused by the
laser pulse further reducing the density in the region of
peak intensity as can be seen in Fig. 6. The axial wake
field E., plotted in Fig. 7, shows a peak amplitude of 4.6
GeV/m. Additional simulations have shown that the

large wake fields generated by a guided pulse can longitu-
dinally and transversely trap and accelerate a trailing
electron bunch to high energies.
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