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Finite-Time Vortex Singularity in a Model of Three-Dimensional Euler Flows

A. Bhattacharjee and Xiaogang Wang
Department of Appit'ed Physics, Columbia University, New York, New York l0027

(Received 18 November 1991)

An analytical model of three-dimensional Euler flows which exhibits a finite-time singularity is given.
The singularity in vorticity occurs at a velocity field null (stagnation point) which lies on the line joining
two vorticity field nulls. It is shown that the vorticity diverges inversely with time.

PACS numbers: 47. 10.+g, 47. 15.Ki

The search for finite-time singularities in incompressi-
ble Euler flows has consumed a substantial analytical and
computational eA'ort in recent years. For two-dimen-
sional flows which tend to zero at infinity and evolve from
smooth initial conditions, there is a smooth classical solu-
tion for all times [1-3]. Vieillefosse has proposed an

analytical three-dimensional model, neglecting gradients
of vorticity and shear in the Euler equations, that exhibits
a finite-time singularity [4]. Until 1990, extensive com-
putational studies of three-dimensional flows were not
conclusive, despite the fact that the numerical methods
employed had attained a high level of sophistication
[5-7]. Recently, finite-time singularities have been re-

ported in numerical studies of axisymmetric flows with
swirl [8], but doubts have been raised that the growth of
vorticity in these studies may be no more than exponen-
tial [9]. Kerr has carried out numerical studies of the in-

teraction of antiparallel vortex tubes, and has reported
that a special class of initial conditions yields a finite-time
singularity in three dimensions [10].

In this paper, we propose an analytical model which

yields a finite-time singularity from the three-dimensional
Euler equations with smooth initial conditions. We take
an initial background flow of the form v, (x, t =0) =F(y
+z), vJ(x, t =0) =F(z+x), and v, (x, t =0) =F(x+y),
where F is a smooth function. Hence, the condition
V v=0 is satisfied identically. We assume that v has a
null (stagnation point) at the origin x y=z=0. Then
near the null, v=x (Vv)p. The tensor (Vv)p, which has
zero trace for incompressible flows, has two degenerate
eigenvalues k = —F'(0) and a third eigenvalue
=2F'(0). We require that F'(0)=vp/L be positive; here
i 0 and L are chosen to be positive constants. Then two of
the eigenvalues X —are negative and the third eigenvalue
k+ is positive. This null is of type A, according to the
classification given in Refs. [11—13]. The two streamlines
originating from the null along the eigenvector for k+
define the so-called y~ line which is a one-dimensional
unstable manifold. In the vicinity of the null, the eigen-
vectors for the two negative eigenvalues A. lie on a two-
dimensional plane, called the X~ surface, which is a two-
dimensional stable manifold. Near the null, the back-
ground flow v is irrotational.

Superimposed on the initial background flow, we have
a smooth incompressible localized flow of the form
u„(x, t =0) =f(y), u~(x, t =0) =f(z), and u-(x, t =0)

=f(x) with f(0) =0. The flow u also has a null at the
origin where u=x (Vu)p. The tensot' (Vu)p has the ei-
genvalues Ap =f'(0) and X+ =f'( 0)exp(+'i 2tr/3) We.

choose f(x) =up(x/a)exp( —x /a ), where up and a are
positive parameters and a «L. This choice is sufficient to
localize the flow u near the origin. Since f'(0) =up/a
& 0, the null is of type 3,. The subscript s denotes the

spiraling trajectories of the streamlines into the null in

the two-dimensional surface Z~ containing the eigenvec-
tors for the complex eigenvalues k+. This two-di-
mensional surface is the stable manifold for the null of u,
whereas the y~ line is the unstable manifold associated
with the eigenvector for the positive eigenvalue ko. The
global geometry of a type A, null is similar to that of a
type A null. The only diAerence between the two types is
the spiraling structure near the null in A, .

The localized flow u (as well as the background flow

v) obey the symmetry relations u„(x,y, z) =u~(z, x,y)
=u, (y, z, x). An advantage of this high degree of sym-
metry is that the knowledge of a single component of the
velocity is sufficient to describe the two other components.
We exploit this feature in the analytical calculations that
follow.

Unlike the background flow v which is irrotational near
the origin, the localized flow u produces a vorticity field
co, = f'(z), coJ = f'(—x), to,—= f'(y ). Since—f'(x )
=(up/a)(l —2x /a )exp( —x /a ), it follows that the
vorticity has two nulls at x =y =z = + a/42=a+. lt is

easy to see that the null x =y =z =a+ is of the type A„
whereas the null x =y =z =a —is of the type B, [11-13].
A null of type 8, is characterized by one real, negative ei-
genvalue and two complex eigenvalues. The two vortex
lines originating from the 8, null along the eigenvector
for the real, negative eigenvalue form the yq curve which
is a stable manifold. The two-dimensional surface Zq
which contains the eigenvectors for the two complex ei-
genvalues in the vicinity of the B, null is an Unstable
manifold. As illustrated in Ref. [13], the vortex lines for
a 8, null can be obtained simply by reversing the direc-
tions of the vortex lines for an A, null. The straight line
connecting the two vorticity nulls in our initial condition
intersects the origin which is a null for the total velocity
field.

The geometry of the flow fields we have described
above is inspired by the pioneering work of Greene [12],
developed further by Lau and Finn [13], on three-
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+(u+v) Vcu=co V(u+v),

where N =V& u. The physical assumption underlying Eq.
(1) is that the background flow v plays a passive role in

the region ~x~ & ao, and that the crucial dynamics is con-
trolled by the self-consistent evolution of u and cu. Also,
there is no contribution from the large-scale vorticity 0
in Eq. (1) because the large-scale flow is irrotational near
the origin. The region ~x~ -ao, which we call the middle
region, is characterized by the relation ~u~ —~v~. In this
region, we approximate the background Aow v by the
leading order term in a Taylor series which give v

= (vp/L)(y+z), vz = (vo/L)(z+x), and v, = (vp/L)
x (x+y). In the inner region ~x~ &&ao which includes the
origin, Eq. (1) reduces to

N +U VN=N'VU. (2)

We formally introduce a small, positive dimensionless
parameter s—=ao/L, order ~u~/[v~=1, and carry out a
multiple-scale analysis of the Euler equations. We define

dimensional magnetic reconnection. Subsequently,
Greene [14] has emphasized the role of nulls in three-
dimensional vortex reconnection.

We now consider the time evolution of the initial state
described above. It is intuitively clear that if the system
is left to itself, it will tend to concentrate the vortic-
ity near the velocity null. We seek solutions of the
form u„(x,t) =uz(y/a2)exp( —y /a2), u~(x, t) =u3(z/
a3)exp( —z /a3), and u, (x, t) =u((x/a()exp( —x / a(),
where we require the functions u(, u2, u3 and a(, a2, a3 to
change as functions of space and time in accordance with

the incompressible Euler equations. These functions are
constrained by means of an ordering procedure which ex-
ploits the separation in scales between the background
and the localized flows. We take a(, a2, a3 =0(ao), where

ao is a characteristic short scale, and continue to repre-
sent the long scale by L. Though the background flow is

taken to be irrotational in the vicinity of the origin, it
need not be irrotational far away from the origin. We
shall call the region (x~ -L&&ao the outer region. In the
region ~x~ 5 ao, the localized flow obeys the equation

the (dimensionless) length variables X = (X, Y,Z)
—= (x/L, y/L, z/L ) and X„=(X„,Y„,Z„)= (x/a (,y/az, z/
a3). In the inner region X«X„, Y«Y„, and Z«Z„.
Since (u) —(v) in the region )x[—ao, we define
X =(X,Y,Z ) by the relations

X = (L/a ( ) (u (/vo) (x/a ( )exp( —x /a ( ),
Y —= (L/a2)(u2/vo)(y/az)exp( —y'/a2),

Z~ =—(L/a3) (u 3/vo) (z/a3)exp( —z /a3 )

(3a)

(3b)

(3c)

such that, in the middle region, ~X„~—~X ~

—1. In this
region, the background and localized flows can be writ-

ten, respectively, as v= coo(az Y„+a3Z„,a3Z„+a(X„,
a(X„+a2Y„) and u=coo(az Y~,a3Z, a(X ), where coo

=v p/L.
We introduce multiple time scales r =t and T =et, and

seek solutions of the form a;=ao(r)+ca;(x, r) and u;
=Uo(T)+cU;(ax, T). We then have B/Bt =B/Br+~B/
BT. The operator B/Bx is given by

+ (1 —2X„')
Bx a, BX„X„"BX

(4)

Analogous expressions hold for B/By and B/Bz. It follows
that

co» — coo(1 2Zg )
Zm

(5)
ZJl

In the rest of the paper, we shall write out explicitly only
the x component of the vector equations, since the sym-
metry of the initial conditions guarantees that the y and z
components will follow analogously.

We consider the x component of Eq. (1) and evaluate
the different terms in it. It follows from Eq. (5) that
Bco /Bx =Bco„/By =O(s) and to O(1),

Bco» 2cop
Z~(3 —2Z ) (6)

Bz a3
™

Similarly, we find that Bu„/Bx =Bu„/Bz =O(s) and to
o(1),

= cop(I —2 Y„z) (7)
y Yn

Using Eqs. (5)-(7), the x component of Eq. (1) yields to
o(1),

a3 = —coo[(l —2Z„) —4Z„j ' 2a(X Z„(3—2Z„)+2Z„(a(X„+azY„)(3—2Z„)

+a3 (1 —2X„')(1—2Y„) +(1 —2X ) +(1 —2Y )2 Xm Ym Zn ZnXm Ym Zil

(8)

Equation (8) describes the time evolution of the function a3 in the middle region. Analogous equations may be obtained
for the functions a( and az from the y and z components, respectively, of Eq. (1).

We now consider the inner region. For compactness of notation, we define H(x) —=x exp( —x ). Since, in the inner
region, we have ~x~ &&ao, it follows that ~X„~ 0, H(X„),H"(X„) 0 and H'(X„) 1. From the x component of Eq.
(3),
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= [Z„e"(Z„)+e'(Z„)] ' u, e(X„)e"(Z„)— e'(x„)e'(Y„),
Q ~Qp l.43

9Q3

t) r
Q3 Q]Qp

2

Q|Qp Q3

we obtain, in the limit L„O,
(io)

(14) gives

BQ3 Q3
F(x+y) .

t)r z
(is)

We now match asymptotically the solutions in the inner
and middle regions. The matching condition is

The asymptotic matching condition between the middle

and outer regions is

t)a3 . t)a3
lim lim

t)a3 . tia3
lim = lim (i 6)

In order to implement the matching condition (11), we

note that (X,Y,Z ) (Up/aomp)(X„, Y„,Z„)» (X„,
Y„,Z„) because (Up/apmp) —(!u!/!v!)L/ap- I/s. Hence,
setting ul, uz, u3 Up, al, az, a3 ap, and (X Y,Z )

(Up/apmp) (X„,Y„,Z„), we get to leading order

Bao

inner

Q pZg

zm

Lm Ym = —Up.
L„Y„

(iz)

Integrating Eq. (12) with respect to the "fast" time r =t,
we get ap=Up(t t), where t, =ap(t =0)/Up. Hence,
m, —(t, —t), which gives a finite-time singularity at
t =t, . It follows that m~ —m, —(t, —t)

In order to complete the solution, we must match
asymptotically the solutions in the middle and outer re-

gions. The leading order equation in the outer region is

rlo, /tit+v VQ =0 Vv. Clearly, neither u nor m enters
at this order. To find co in the outer region, we must go
beyond this "negligibly large" equation to the "small"
equation

&x'

u= M

Up

Qp

i3
2

0

1 0
2

0
z

1, '

+ ~ ~ ~ (i7)

We now check that Eqs. (8) and (15) do indeed satisfy
the matching condition (16). We recall that F(x+y)
=mp(x+y) as!x! 0. This reduces the right-hand side

of Eq. (16) to mpa3(x+y)/z. Now, using Eq. (8), we see
that as !X„! 00, !X»! 0, the left-hand side of Eq.
(16) reduces to mp(a ~X„+azY„)/Z„=a3(x+y)/z.
Hence, the matching condition (16).

The symmetry of the initial conditions singles out the
x =y =z line as a natural axis. It is instructive to review

the inner region solution in a new coordinate system
(x',y', z') where z'=(I/J3)(1, 1, 1) and x', y' are two mu-

tually orthogonal unit vectors in the plane normal to z'.

To be specific, we take x'=(I/J6)( —1, —1,2) and
y' = (I/J2) (1, —1,0). To leading order, we get

JY
2

'

Cil +u VQ+v Vm 0 Vu+m Vv (is) Redefining x'=r'cos0', y'=r'sin0', Eq. (17) becomes

We consider now the x component of Eq. (13). For
e((1, it is easy to see that!v Vm„!»!0 Vv !

—!m Vu, !

»!u VA „!. Hence, the x component of Eq. (13)
reduces to

Uo J3
Qg' r' +

Qp 2

x +v Vco„=0. (i 4)
which is axisymmetric to leading order. The departure

[The y and z components of Eq. (13) are, respectively, from axisymmetry and the spiral structure is manifest at
the y and z components of rim/r)t+v Vm=0. ] Equation higher order. If Eq. (17) is carried through to higher or-

! der, we get

JX .
sin 30' ——

2 6

m=JY Up

Qo

0
0 +

Qp

—r
r'JSr' +

( Qp
z

Ws
cos 30' ——2, 6

In the new coordinate system, the inner region equation (2) reduces, in leading order, to

=co, „,u,
az

(2o)
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which, in turn, gives Ban/r)t = —Uo and hence, ao
=Uo(t, —t), as obtained earlier.

In a small region surrounding the origin, the solutions
of the Euler equations exhibit a local self-similarity. To
be precise, for all times prior to the blowup of vorticity,
there exists a small region surrounding the origin where

the solution is invariant under the scaling x cx, u u,
ct, where c is a constant. In this small region, the

solutions u„y/(t, t ), u—
y =z/(t, t ), —u, =x/(t, t )—

[which imply co„=co~ =co, = —1/(t, —t)] satisfy Eq. (2)
exactly.

It may be argued, on first glance, that the singularity
obtained here is unphysical because the initial flows have
infinite total energy. This is indeed the criticism [15] of
earlier investigations of two-dimensional [15] and three-
dimensional [16] solutions of the stagnation-point form.
We point, however, to an important difl'erence between
our system of flows and those considered in Refs. [15]
and [16]: In our initial conditions, the velocity and vorti-

city fields are bounded everywhere, including points at
infinity. Infinite energy is obtained in our initial condi-
tions merely because our system size is infinite. We em-

phasize that the velocity itself remains bounded in our
model for all times leading to the blowup of the vorticity.
Since the energy density is finite everywhere, including
points at infinity, we can exclude the possibility that the
finite-time singularity is an artifact of the infinite system
size [17].

Looking back at our derivation of the vortex singulari-

ty, one may wonder as to why we retain the background
flow v at all, since it plays only a passive, uninteresting
role. We do so because it sets the large scale L, and also
because it is likely to be present in most physical situa-
tions of interest. The background flow v would play a
more active role if, in our initial state,

~
u

~
were much

smaller than ~v~. Then it can be shown that the back-
ground flow would shrink ao (exponentially under certain
conditions) and enhance u until the condition )u[ —~v~ is

realized. Once this occurs, the background flow would

again be reduced to a passive role, as in our present cal-
culation.

The finite-time singularity obtained in our model
should be observable in numerical experiments involving
antiparallel [5,10,18-20] or orthogonal [21,22] vortex
tubes. In such interactions, the configuration of a veloci-

ty null on a null-null line for the vorticity can occur natu-
rally. The singularity is then realized as the two vorticity
nulls approach the velocity null.

The singularity obtained in the present model is fully
three dimensional in character. Yet the occurrence of
spiral structures is reminiscent of the strained vortex
model of Lundgren [23] which, in turn, can be viewed as
a natural sequel to Townsend's model [24] of the inter-
mittent structure of turbulence as being due to a random
distribution of vortex tubes (and sheets) each of which is
subjected to a background strain caused by other vortex

structures. The presence of even a small but finite viscos-

ity is expected to arrest the formation of the finite-time

singularity in our model.
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