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Arithmetical Chaos and Violation of Universality in Energy Level Statistics
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A class of strongly chaotic systems revealing a strange arithmetical structure is discussed whose quan-
tal energy levels exhibit level attraction rather than repulsion. As an example, the nearest-neighbor level

spacings for Artin's billiard have been computed in a large energy range. It is shown that the observed
violation of universality has its root in the existence of an infinite number of Hermitian operators (Hecke
operators) which commute with the Hamiltonian and generate nongeneric correlations in the eigenfunc-
tions.
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There seems to be no doubt that the statistical proper-
ties of quantal energy spectra and eigenvectors of classi-
cally chaotic systems are well described (with respect to
their short-range correlations) by the universal laws of
random-matrix theory (RMT) [1],originally proposed by
Wigner and by Landau and Smorodinsky and fully
developed by Dyson for a better understanding of the res-
onances of compound nuclei. (See Ref. [2] for a collec-
tion of the original papers, and Refs. [1,3,4] for recent re-
views. ) In the simplest case of generic Hamiltonian sys-

tems whose classical motion is time-reversal invariant,
two universality classes are predicted: All systems with

an integrable classical limit fall into one class, and all

systems whose classical limit is strongly chaotic (K sys-
tems) fall into another class. Consider, e.g. , the density
distribution P(s) of "unfolded" nearest-neighbor level

spacings s. In accordance with the empirical observation
that the short-range spectral fluctuations of integrable
systems are just those of random numbers, the level spac-
ing distributions for these systems are Poissonian, i.e.,

Ppo; zo„(s) =e ', while those of chaotic systems are the
same as for the eigenvalues of large real symmetric ran-
dom matrices, i.e., of the Gaussian orthogonal ensemble
(GOE), which in the case of P(s) is well approximated
by Wigner's surmise Pw;g«„(s) =

2 trse " . For small

spacings, s 0, the two distributions exhibit the well-

known phenomenon of level attraction [P(s)—1
—s] for

classically integrable systems and of level repulsion
[P(s)—2 s] for strongly chaotic systems. It thus appears
that the statistical properties of a given quantum system
are already determined by its classical limit, depending
only upon whether this is chaotic or not.

In this Letter we study an interesting class of strongly
chaotic systems whose quantal eigenvalues exhibit sur-

prisingly enough level attraction rather than repulsion,
and which thus lead to an apparent violation of the
universal laws of RMT. We show that these systems re-
veal a strange arithmetical structure of chaos, which we

call arithmetical chaos, that manifests itself in the ex-
istence of an infinite number of Hermitian operators corn-

muting with the quantum Hamiltonian, and which are

the origin of unexpected correlations in the quantum
eigenstates. The existence of such operators could not be
anticipated since these systems, having 2 degrees of free-
dom and being ergodic, possess classically only a single
constant of motion, namely, the conserved energy. Before
giving a general characterization of such systems, we dis-

cuss in some detail Artin's billiard as a prototype exam-

ple.
Artin s billiard [5,6] is a two-dimensional non-Euclid-

ean billiard consisting of a point particle sliding freely on

a noncompact Riemannian surface of constant negative
Gaussian curvature K = —

1 with the topology of a sphere
containing an open end (cusp) at infinity. The surface
can be realized on the Poincare upper half plane
'iV = Iz =x+iy, y & 0] endowed with the hyperbolic
metric ds y (dx +dy ). On 'ff the modular group
I =PSL(2,Z) operates via fractional linear transforma-
tions, i.e., by ) =(;d) C I, z C /f, )z =(az+b)/(cz+d).
The classical (i.e., geodesic) motion on the surface I $i'Y is

rigorously known to be ergodic [5,7] and even strongly
chaotic (K system). This surface can also be represented

by the fundamental region 9 = [~z
~

~ 1, —
2

~ x ~
& I

CP of the modular group, provided the boundaries are
identified correctly. 7 is a noncompact triangle of finite

area tr/3. The corresponding quantum system is governed

by the Schrodinger equation Hy=ElI// with the Hamil-
tonian H = —A, where h=y (8„+t)y) is the hyperbolic
Laplacian (h =1=2m). The eigenfunctions have to be
invariant under the action of the modular group, i.e., they
have to obey the periodic boundary conditions (b.c.)
ttr()'z) =ttt(z) for all ) E I and z E P. The spectrum of
H is both continuous and discrete. (See Ref. [8] for the
mathematical background. ) The scattering solutions cor-
responding to the continuous spectrum are explicitly
known and are given by the Einstein series. Here we are
interested only in the eigenfunctions ttr„(z) which are
square integrable with respect to the scalar product
(ttr, y) =Ipttlydxdy/y and thus belong to the discrete
spectrum of H. Artin's billiard is symmetric under

reflections on the imaginary axis. We therefore consider
the two desymmetrized quantum billiards corresponding
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to the two pariry classes y„—( —z) = ~ y„—(z), depend-
ing on whether the eigenfunctions are even or odd under
reflections on the line x=0. The desymmetrized systems
can be viewed as quantum billiards defined on the halved
domain 2) = [)z i

) 1, 0(x ( —,
' ]. Then the eigenfunc-

tions have to obey Neumann b.c. on 82) for parity +1
and Dirichlet b.c. on M) for parity —l. Apart from the
ground state with energy Eo+ =0 belonging to the con-
stant eigenfunction yn+ =(3/~)'i, the discrete spectrum
E I

(E2 ( is embedded in the continuum [ —,', ~)
as can be seen from the rigorous lower bound
Ei &3—n /2 & —,

' . Expressing the eigenvalues E„by the
momenta p„, E„=p„+4, n ~ 1, the even eigenfunctions
have the Fourier expansion (suppressing the label +)

y„(z) =N„Jy g c„(k)K& (2nky) cos(2xkx),
Jt

while the odd eigenfunctions have a similar expansion
with sin(2nkx) replacing cos(2zkx). From the theory of
Heeke operators (see below) it follows that the expansion
coefficients c„(k) are real with c„(1)WO for all n) 1,
which allows us to work with normalized coefficients
satisfying c„(I) =1. The real overall normalization N„ in

Eq. (1) ensures that (y„,y ) =8„. Notice that the y„'s
are real due to a well-known property of the modified
Bessel function K,(x). In the mathematical literature the
eigenfunctions (1) are known as nonholomorphic cusp
forms or Maass wave forms. The coefficients c„(k) satis-
fy the exact upper bound ic„(k) i

(d(k)k 'i, where d(k)
denotes the number of positive divisors of k. %ith
d(k) (24k and Kr (2zky) =O(e '"«) it follows that
the series expansion (1) is absolutely convergent in the
~hole billiard domain. The generalized Ramanujan-
Petersson conjecture asserts that ie„(k)i (d(k), i.e., in
particular, ic„(p) i

( 2 for every prime p.
At present, no analytical results are known for the ei-

genvalues E„or the coefficients c„(k) for Artin's billiard
despite the great importance such results could have for
modern number theory [8,9]. Recently it was demon-
strated [6,10] that the low-lying energy levels can be
determined approximately by computing the nontrivial
zeros of a certain Selberg zeta function or by using a spe-
cial version of the Selberg trace formula, respectively.
(Similar results hold for other chaotic systems, too, but
then, in general, only in the semiclassical limit. ) Until
fairly recently, there were major difficulties associated
with computing the eigenvalues by solving the Schro-
dinger equation. (See Appendix C of Hejhal s treatise
[8] for various papers having appeared since the early
1970's.) A major breakthrough has been achieved by
Hejhal [9] (see, also, Ref. [11])who was able to compute
with high precision all eigen values with momenta
p„~ 50. 1 corresponding to SO even and 73 odd eigenval-
ues. The nearest-neighbor level spacing distribution P(s)
computed from this small sample of eigenvalues did not
show the expected level repulsion and thus provided the
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FIG. 1. Histograms of the level spacing distributions P(s)
for Artin's billiard for (a) even and (b) odd eigenfunctions in
the momentum range 250(p„(300. The solid and dashed
lines correspond to the Poisson and GOE predictions, respec-
tively. Insets: P(s) in the low momentum range p, ( 100.

first hint [12] that Artin's billiard does not fit into the
universal scheme of RMT. To obtain clear evidence for
the violation of universality one requires a larger number
of energy levels. Recently, we have determined [13] the
eigenvalues E„with an accuracy of about 10 ' together
with the first coefficients c„(k) for momenta p„( 300
corresponding to the first 3167 even and 3475 odd eigen-
functions. No degeneracy occurs and no violation of the
Ramanujan-Petersson conjecture is observed. (Indepen-
dent computations have been carried out for a few low-
lying levels also in [14] and for the first odd levels in
[15].) With the help of the improved Weyl's law count-
ing the energy levels E„[see Eq. (9) in Ref. [6] for the
odd and [13,16] for the even case] we have unfolded the
two spectra and computed the level spacing distributions
P(s). In Fig. 1 we present the histograms computed from
the eigenvalues in the momentum range 250 ~p„~ 300;
Fig. 1(a) corresponds to the even case comprising 1026
levels, while Fig. 1(b) refers to the 1093 odd levels. The
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two universal statistics are plotted as the solid and dashed
lines, respectively. One observes a striking level attrac-
tion and thus a clear violation of the universal laws of
RMT. We have also calculated P(s) for various samples
of levels at lower energies; again the Wigner distribution
is ruled out, although at small spacings the histograms
are somewhat lower, indicating that the distributions are
not yet stationary. The two insets in Fig. 1 show the his-
tograms corresponding to the low momentum range p„~ 100. Summarizing our findings we can safely say that
Artin's billiard, although strongly chaotic, reveals at high
energies Poissonian fluctuations, even after complete
desymmetrization. We will now show that this strange
result has its root in a deep result of number theory asso-
ciated with the theory of Hecke operators.

Define for any k F 4 the Hecke operator TI,. acting on
a Maass wave form P(z) by

I g az+b
Jg ad k, d&0

bmodd

(2)

c„(k)c„(l)= g c„
kl

dl(k I) d

which are a direct consequence of the multiplication law

for the Tk's, and which state that the expansion coefFi-

cients of the eigenstates (I) are highly correlated In fact, .

the c„(k) are polynomials in c„(p), p prime. [E.g. ,

c„(4)=c„(2)—1, c„(6)=c„(2)c„(3), c„(8)=c„(2)
—2c„(2), c„(12)=c„(3)c„(4).] This is in striking con-
trast to the prediction of RMT that the expansion
coe%cients with respect to a generic basis should be
Gaussian distributed with a zero mean. Although we

have chosen a special basis in (I), the correlations will

pertain in a generic basis since the Hecke operators relate
the values of the wave functions at different points [see
Eq. (2)]. Thus we have shown that the eigenfunctions of
Artin's billiard do not fit into the universal scheme of
RMT. In view of this result there is no reason why the
level Auctuations should obey the GOE prediction and,
indeed, they do not, as demonstrated in Fig. 1.

Finally, we would like to point out that Artin's billiard
is not a singular exception but rather belongs to a large

Then it can be shown [8] that the algebra generated

by the Tt, 's is commutative, [Tk, Tt] =0, with Tt, Tt
=gd~tt, tiT„ttdi, where (k, l) denotes the largest common
divisor of k and l. Furthermore, acting on Maass wave

forms, the Hecke operators are Hermitian, (itt, Tt, p)
=(Tt, y, p), and since [A, Tk]=0 holds, one infers that the
eigenfunctions (I) of our Hamiltonian can be chosen to
be simultaneously eigenfunctions of all Hecke operators
leading to the remarkable relation Tk itI„(z) =c„(k)itt„(z)
for all k, n 6 N, which tells us that the normalized
coefficients c„(k) are just the (real) eigenvalues of the
Hecke operators. Most important for our discussion are
the Hecke relations

family of strongly chaotic systems sharing similar proper-
ties. Consider the geodesic motion on compact or non-

compact Riemannian surfaces M with constant negative
curvature and of finite area. Such surfaces can be repre-
sented as M=I (/f, where I is a discrete subgroup of
PSL(2,R). Some of the simplest generali=ations of
Artin s billiard are obtained by considering [11,14] as
"billiard tables" the noncompact domains Ptv = {~z~ ~ I,
~x~ ~ cos(tr/N)}, N =3,4, 6, ~, which are the fundamen-
tal regions of Hecke triangle groups. (The case N =3 is

just Artin's billiard. ) For definiteness, let us now concen-
trate on the motion on compact surfaces of genus g» 2
(Hadamard-Gutzwiller model [17]) realized on 'H by hy-

perbolic polygons with 4g edges. Again, the Hamiltonian
is given by 0 = —h, , and the eigenfunctions have to satis-

fy periodic b.c., i.e. , y(yz) = y(z) for all y 6 I (I-
automorphic functions). Then H has only a discrete
spectrum O=E0 & E] ~ E2~. . . . Among the infinitely

many inequivalent choices for I, the so-called arithrneti-
cai Fuchsian groups [18] play a special role. These
groups have the special property that all traces of the
2 & 2 matrices representing a given y e I are algebraic in-

tegers, and thus the lengths l„of the classical periodic or-
bits (closed geodesics) are determined by algebraic in-

tegers, too, in the form 2cosh(l„/2) = algebraic integer
This leads to a strange arithmetical structure of chaos,
first discovered in [19] in the case of the "regular octa-
gon" corresponding to the simplest case g =2 and associ-
ated with the highest possible symmetry. These arithmet-
ical properties made it possible to construct an explicit
enumeration scheme for the group elements and thus to
calculate completely the shortest ca. 4&10 periodic or-
bits [201. Surprisingly, an exponential increase of the
mean multiplicity g„of the lengths of primitive period-
ic orbits was found, „-8&2e" /i„. We now recog-I„/Z

nize that g„-const xe" /l„ is a universal feature of ar-
ithmetical chaos due to the above-mentioned arithmetical
structure of the length spectrum. (Notice that g„= 1 or 2

for generic systems with time-reversal invariance. ) Quite
analogously to what has been observed in Artin's billiard,
the energy levels of the regular octagon show level attrac-
tion rather than repulsion, even after complete desym-
metrization [21]. (For a special symmetry class, this was
first observed by Bohigas, Giannoni, and Schmit [22].) It
has been argued (see the contributions by Bohigas and by
Schmit in [4]) that the violation of the universal laws of
RMT is caused by the fact that the regular octagon is

tessellating the hyperbolic plane and thus Gutzwiller's
trace I'ormula [3] is exact rather than a semiclassical ap-
proximation as in the generic case, since it is identical to
the Selberg trace formula. This explanation is not
correct, however, since it has been shown [23] that the
short-range fluctuations of thirty diA'erent Hadamard-
Gutzwiller models on asymmetric surf'aces I )VAN generat-
ed by nonarithmeticaI groups I are in nice agreement
with the GOF predictions. For all these systems the Sel-
berg trace formula holds, and all these octagons tessellate
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the hyperbolic plane. Thus there must be a different ex-
planation. Indeed, all arithmetical Fuchsian groups pos-
sess [18] an infinite number of Hecke operators that are
Hermitian and commute with the Hamiltonian and which
generate correlations in the eigenfunctions. Therefore,
the situation is analogous to Artin s billiard, and no GOE
fluctuations are expected.

In this Letter we have discussed a class of strongly
chaotic systems whose classical motion exhibits arithmeti-
cal chaos and whose quanta) energy levels show level at-
traction rather than repulsion. It has been pointed out
that this striking violation of the universal laws of RMT
has its root in the existence of an infinite number of
Hecke operators which generate nongeneric correlations
in the quantum wave functions.
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