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Universal Criterion for the Breakup of Invariant Tori in Dissipative Systems
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The transition from quasiperiodicity to chaos is studied in a two-dimensional dissipative map with the
inverse-golden-mean rotation number. On the basis of a decimation scheme, it is argued that the
(minimal) slope of the critical iterated circle map is proportional to the effective Jacobian determinant.

Approaching the zero-Jacobian-determinant limit, the factor of proportion becomes a universal constant.
Numerical investigation on the dissipative standard map suggests that this universal number could be-

come observable in experiments.

PACS numbers: 05.45.+b

In an almost linear continuous dynamical system with

two competing frequencies, the attractor is typically ei-
ther a mode-locked periodic state or an invariant torus
associated with quasiperiodic motion. In the parameter
space, periodic and quasiperiodic attractors are mingled

up in such a way that there is a positive probability for
each kind of orbit to be found. Experiments indicate that
mode locking and quasiperiodic behavior are generic in

hydrodynamics [I], charge-density-wave conductors [2],
and other physical [3,4] and chemical [5] systems.
Changing parameter values may increase the nonlinearity
and lead to a transition to chaos.

The experiment by Martin and Martienssen [3] on the
electrical conductivity of barium sodium niobate crystals
is a very nice example of the case in which it is possible to
measure the actual return map characterizing the discre-
tized dynamics on an invariant circle (the invariant torus

appears as an invariant circle for the Poincare map of the
system). Bohr et al. [6,7] point out the intimate connec-
tion between the existence of an invariant circle and the
one-dimensional nature of the return map. In particular,
they show that a zero slope in the return map is impossi-
ble if the underlying invariant circle is smooth. The fact
that the invariant circle loses smoothness before breaking

up [8,9] could mislead one into thinking that a zero slope

in the return map is a necessary condition for the system
to be criti. al, i.e. , about to become chaotic. Another
motivation for this kind of false idea could come from the
fact that an analytic circle map has a zero-slope inAection

point at the transition from quasiperiodicity to chaos
[10]. However, if the Jacobian determinant of the Poin-

care map is positive everywhere along the invariant circle,
it is impossible that the "reduced" circle map, i.e. , the
projection of the Poincare map on the invariant circle,
would have I zero slope at some point of the circle. The
reduced circle map could have a zero slope only if the
tangent vector at the corresponding point was annihilated

by the Jacobian matrix. This could happen only if the
Jacobian determinant vanished. The positivity of the
slope of a critical circle map has been noticed by several
authors [11].

In this Letter the relation between the slope of the re-

duced circle map and the Jacobian determinant is elab-
orated further. For simplicity, I will restrict myself to a

two-dimensional Poincare map with rotation number

j=(J5 —I)/2. The reduced circle map is denoted by

h(x), where x is a scaled "angle" variable for the invari-

ant circle so that h(x+ I ) =h(x)+1. By the assumption
on the rotation number, h "(x)/n g and, moreover,

h„(x) —F„ i
=—h "(x) —F„ i x as n tends to infinity.F„

Here F„stands for the nth Fibonacci number,
F„+1=F„+F„—i (Fp=0, Fi =I). The Jacobian deter-
minant of the F„-times iterated map at .x is denoted by
J„(x). It will be shown below that in the critical case
h„'(xp) —J„(xp), where xp is a special point [8,9] associ-
ated with the universal scaling by a= —1.2885746. x[)
corresponds to a cubic critical point for an analytic circle
map. In a higher-dimensional dissipative system, .xo can
be searched either as the point visited most rarely by the
quasiperiodic orbit or as the limit of points x„, n

such that h„'(x) has a minimum at x„. It could as well bc
stated that h„'(x„)—J„(x„). For a dissipative system,
J„(x)--.0 as n-= ~, so that a zero slope is indeed ob-
served but only considering the limit of an infinitely high

iterate of the original circle map.
Furthermore, the calculation shows that the factor of

proportion between h„'(xp) and J„(xp) tends to a univer-

sal constant as the Jacobian determinant approaches
zero. In this limit,

h„'( x)p a= as n
J,, (x p) [tI (0)] 'tl"'(0)

where tI(x) is one of the components of' the universal
fixed-point pair (g, tI) for the standard renormalization
operator T(g, rl) =a(tl, tlo()a ' tor analytic circle maps
[81. MacKay's [12] expansion for ti(x) leads to the nu-

merical estimate a = 0.435 625.
The starting point is Bohr's [7] formula relating the

derivatives of the first and the second iterates of the re-
duced circle map. Consider a two-dimensional map
G(x, 1') =(g (x,y), g~(x,y)) with an invariant circle
v=c(x) [G(x+1,y) =G(x,y)+(1,0)]. The original

map can be related to a one-dimensional circle map by
h(x) =g1(x,c(x)) and c(h(x)) =g~(x, c(x)). Differ-
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entiating these two equations with respect to x yields,
after some manipulation,

dh'(x)
dx

g22(x)gi2(h (x) )giihx +
gi 2(x)

x h '(x) — J(x),gi2(h(x))
giz x

(2)

Bg;(x,y)
gii x

Bg;(x,y)
gi2 xB,t„&'

'
By

J(x) =g i i (x)g22(x) —gi2(x)g2i (x) .

y =c(x)

It is important that the equation for the invariant circle
does not appear in (2).

Equation (2) can be written in the form

h3(x) =c2(x)h2(x)+d2(x) . (3)

I introduce a decimation technique by which one can gen-
erate from (3) and the trivial equation h2(x) =IhI(x)
+0 a sequence of equations

h„'pi (x) =c„(x)h„'(x)+d„(x) (4)

with increasing n Assu. me that (4) is known for n =i and
n =i —1. Write h ~3(x) as

h+i(h;(x))h (x) =c;(h;(x))h (h;(x))h (x)

+ d, (h, (x) )h,'(x)

and split h (h;(x)) further:

h (h; (x) ) =c;—
i (h; (x) )h - i (h; (x) ) +d; —i (h; (x) ) . (6)

Replacing h —i (h;(x))h (x) by hi'+i (x) and using the
fact that

h ii(x) -d;(x)
c;(x)

leads finally to

h +2(x) =c;+i(x)h +i (x)+d;+i(x)

h„(xp+z) F„i——xp =-a "g(a"z), (8)

where the approximation improves with increasing n.
This implies h„'+ i (h„(xp) ) rl'(g(0) ) =a and h„'

&(h„(xp))~ g'(rl(0)) =a, where the derivatives have

been calculated from the fixed-point equation. Thus,
c„(xp) a = 1.66 as n tends to infinity.

The asymptotic behavior of h„'(xp) is solely determined

by those of c„(xp) and d„(xp). If h„'(xp) approached
zero slower than d„(xp), there would exist an N such that
for all n &N, h„'+i(xp) & Ch„'(xp) with C& l. In this
case, h„'(xp) would actually keep growing without any
limit as n ~, which would be contradictory to the ten-
dency of the renormalized circle map to approach the
universal function rl(x). On the other hand, (4) implies
that h„'(xp) cannot decay to zero faster than d„(xp). In

other words,

d„(xp)
h.'(xp) = — " +O(J.+i(xp)) -J„(xp) .

c„(xp)

It turns out to be possible to work out the limit of the fac-
tor

e„(x)= —d„(x)/c„(x)J„(x)

at x=xo approaching the case in which the Jacobian
determinant vanishes. Note first that

giz(h(x)) giz(h3(x))
e2 x e3 x

gi2(X)C2(X) gi2(X)C2(X)C3(X)

=J„+i (x). One can now proceed to determine the
asymptotic behavior of c„(x) as n ~. Equations
(5)-(7) give

h„'+i(h„(x)) =c„+i(x)h„' i(h„(x))

+ " [h„'- i (h„(x)) —c, (x)] .
d„+ 1 (x)
d„x

Because d„+i(x)/d„(x) 0, all one needs to know is the
asymptotic behavior of h„'+ i (h„(x)) and h„'- i (h, (x) ). I

consider here only the critical case with x =xo. On the
basis of the renormalization theory [8,9,13], it is expected
that

with

d;+i(x)
c;+i(x) =c;(h;(x))c;-i(h;(x))—

di x
(7)

Equation (7) implies a recursion relation for e, (x),
n =3,4, . . . , which becomes very simple in the zero-
Jacobian-determinant limit:

d;(x) [d;(h;(x) )+c;(h;(x) )d;- i(h;(x) )]
d;+i x) =-

c;(x)

These recursion relations help in determining the leading
asymptotic behavior of c„(x) and d„(x) as n tends
to infinity. First, it can be inductively argued that
d„(x)-J„(x) (except for n=l). Recall that di(x)—=0
and d2(x) —J(x) so that (7) implies d3(x) —J(x)
x J(h(x)) =J3(x). At each level n ) 3 of the recursion,
the leading term in the Jacobian determinant arises from
the product —d„(x)d„- i (h„(x))—J„(x)J„—i (h„(x))

gi 2(h„(x) )
x

g„( )Q;=" ' (h'( ))
1

Q;="p 'c2(h'(x))

Here I have used the fact that h„(x)(mod 1) x as
n ~ for the inverse-golden-mean rotation number.
Leaving the d term proportional to the Jacobian out of

e„~i(x) = e„(x)e„—i(h„(x) ) .

Because c3(x) can be replaced by cq(hq(x))ci(h3(x))
=—c2(hz(x)), it is easy to write down the form of a gen-
eral e„(x):
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(4), one obtains
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where the derivative can be calculated using (8):

h'(xp+ a "r)(a"z)) r)'(a "z)
h„' h xp+z h'(x. +.)

t)(z) has a cubic critical point at z =0 [8]. Furthermore,
also h (xp+ z ) develops such a point in the zero-
3acobian-determinant limit. Expanding all the deriva-
tives around z =0 and letting z 0 leads to

h, (h( ) ) [r)(0)] 'r)"'(0)
2

We have thus derived Eq. (1).
Table I shows h„'(xp)/J„ for the dissipative standard

map,

g 1 (x,y) =x+ n +by — sin (2nx ),k

27K

gz(x, y ) = ft +by — sin (2mx ),k
27t.

with the constant Jacobian determinant b =0.5. The crit-
ical parameter values for the breakup of the "golden" in-

variant circle can be determined by a dissipative version
of Greene's residue criterion [14]. xp, yp is taken as the
point where the approximating periodic orbits have the
largest gap. The calculation of h„'(xp)/J„using the for-
ward recursion relation (4) would be extremely sensitive
to the choice of the value of hz(xp) =h'(xp). An error e

in h'(xp) would give rise to an error eg,"=z'c;(xp) in

h„'(xp) which would be of the order el.66" . As J„de-
cays to zero very fast with increasing n (Ji5-10 ' ),
the error in the ratio h„'(xp)/J„would soon become astro-
nomical. A better way to calculate this ratio is to apply

TABLE I. Subsequent estimates for the factor h„'(xp)/J, re-
sulting from the critical dynamics of the dissipative standard
map (b =0.5, k =0.9788377790, 0 =0.3058769514).

h.'(xp)/J.

2

3
4
5

6
7
8

9
10
11
12
13
14
15

0.5280
0.4333
0.4548
0.4146
0.4384
0.4191
0.4385
0.4272
0.4387
0.4312
0.4380
0.4331
0.4373
0.4339
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(4) backwards beginning with the approximation
h~(xp) =0 for some large N. The initial error is very
small (—J~) and the error in h„'(xp) is reduced by a fac-
tor around 1.66 at each step. In fact, a very good esti-
mate for the ratio h„'(xp)/J„ is obtained already for
n =%—

1 if A' is not very small. The calculation of
c„(xp) and d„(xp) by (7) appears to be numerically very
stable. Thus, all the error arises essentially from the
inaccuracy in determining the critical parameter values
and the point xp, f p.

Table I shows no deviation from (1) although the sys-
tem is quite far from the zero-3acobian-determinant lim-
it. This could be taken as a hint that Eq. (1) would be
valid more generically than the derivation would reveal.
It would be intriguing to see this tested experimentally.
If the experimental data enabled one to construct the
one-dimensional return map, it would be quite easy to
calculate derivates of higher iterates of this return map
by using finite difI'erences. Usually the point xp and the
3acobian determinant would not be known. It ~ould be
best to estimate the smallest slope of each Fibonacci
iterate of the reduced circle map and calculate
h„'h„' i/h„'+l. If the Jacobian determinant varied only
little along the invariant circle, this ratio could be close to
the universal constant a. It is clear that noise would
prevent one from carrying out the calculation for high n.
Nevertheless, Table I suggests that even the lowest-order
estimate could give a reasonable result.

As to other rotation numbers, I would expect the
effective Jacobian again to play an important role [15].
The transition to chaos should be observed by monitoring
the smallest slope of the higher iterate h "(x) of the re-
duced circle map, where Q„would be the denominator of
the nth truncation of the continued-fraction expansion for
the rotation number. In the critical case, one would ex-
pect this slope to tend to zero as n ~, whereas in the
subcritical region the asymptotic slope should be unity
[8,9].

Equations (4) and (7) can be used to study the conser-
vative case J(x)=—1 as well. Both c„(xp) and d„(xp)
have universal nonvanishing limits (xp now corresponds
to a point on a dominant symmetry line [12]): c (xp)
= 2. 1676633 and d (xp) = —0.4916138. c (xp) ap-
pears to be determined by the ratio of the universal
phase-space scaling constants [12]. h,'(xp) has a univer-
sal positive limit d (xp)/[I —c (xp) ] = 0.421 023 6.
The estimate obtained by setting J„=1 in (1) deviates
only about 3% from this true value.

The decimation technique introduced in this Letter is

readily applicable also to other problems, e.g. , to the
discrete quasiperiodic Schrodinger equation [16]. Equa-
tion (3) can be interpreted as a discrete eigenvalue equa-
tion with h„representing the wave vector yF at site F„
[17]. The modulating potential is included in c2. Assum-
ing the normalization condition |tip = 1 one can take
dq =——

1 The present approach is appropriate when the
potential has the frequency ( relative to the underlying



VOLUME 69, NUMBER 15 P H YSICAL R EVI EW LETTERS 12 OCTOBER 1992

lattice. Infinite products of transfer matrices usually
diverge [18], whereas by writing down recursion relations
similar to (7), it is possible to find a bounded limiting be-
havior for the coefficients c„and d„[17].

The fact that the slope of the reduced circle map de-
pends on the effective Jacobian is in nice agreement with
the conjectured mechanism for the breakup of having a
tangency between the invariant circle and its stable folia-
tion [8]. It is natural to think the contraction on the
stable foliation is proportional to the effective Jacobian
determinant. At the point of tangency, the slope of the
associated circle map should therefore be proportional to
the Jacobian.

I would like to thank M. H. Jensen for pointing out
Ref. [3] to me and J. Kurkijarvi for comments on the
manuscript.
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