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Using semiclassical arguments substantiated by numerical results for the quantum kicked rotor, we es-

tablish that breaking an antiunitary symmetry in a system with dynamical localization increases the lo-

calization length by a factor of 2. The transition between the symmetric and the symmetry-broken case

is smooth. The semiclassical theory provides an approximate expression for the transition function as

well as the critical strength of the symmetry-breaking interaction necessary to achieve the full factor of 2

increase of the localization length.

PACS numbers: 05.45.+b

Anderson localization was first discovered in the study
of electron transport in disordered systems [1]. Later it
was also found in certain deterministic Hamiltonian sys-
tems, whose classical dynamics is chaotic. A paradigm
system is the quantum kicked rotor [2,3] but it occurs
also in other systems such as, e.g., the hydrogen atom in a
microwave field [4]. These rather simple systems and the
disordered (quasi-one-dimensional) solid share three im-

portant properties which enable the onset of Anderson lo-
calization: (i) the classical phase space is extended, (ii)
classical diffusion characterizes the classical evolution,
and (iii) many trajectories contribute to the same transi-
tion, and the corresponding quantum amplitudes are en-
dowed with phases which are sufficiently uncorrelated to
induce Anderson localization as a result of intricate in-

terferences.
It is well known that breaking time-reversal symmetry

affects many global properties in a universal way. Well-
known examples are spectral statistics and the distribu-
tion of transition probabilities and resonance widths
[5-9]. The effects of symmetry breaking are commonly
studied within randotn matrix theory [5-91. It em-
phasizes the importance of antiunitary symmetries [9] in

general, of which an outstanding example is time-reversal
symmetry. There is a growing amount of evidence which
indicates a strong correlation between localization and
symmetry in disordered systems [10,11]. It was shown
that in quasi-one-dimensional systems the localization
length A, satisfies A, (P) Pk(P=I) where P= 1 (or 4) for

time-reversal invariant disordered systems which do not
(or do) involve spin degrees of freedom. P =2 for systems
with broken time-reversal symmetry.

In the present work we discuss the effects of symmetry
breaking on the localization induced by the underlying
chaotic dynamics, and compare it to the known behavior
of disordered systems. We use semiclassical arguments
supported by extensive numerical tests to show that
breaking the symmetry modifies the localization length.
We will show that the localization length is a continuous
function of the strength of the symmetry-breaking in-

teraction. For sufficiently strong interactions the locali-
zation length increases by a factor of 2, in accordance
with the behavior of disordered systems.

We consider the kicked rotor, whose Hamiltonian is
modified to allow for symmetry breaking. We follow the
notations introduced in Ref. [12]. We use

H =I /2+g(8;k, q) g b(t —mr ),
m

where

g(8;k, q) =k[cos(trq/2) cos(8)+ & sin(trq/2) sin(28)] .

The angular momentum I and the impulse strength k are
measured in units of 6; q is the symmetry-breaking pa-
rameter which ranges from 0 to 1 and i is the time inter-
val between kicks. For q =0, (1) reduces to the standard
problem whose Hamiltonian is invariant under the follow-
ing symmetry operations: T& .I —I, 8 8, t
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(time reversal), T, :i —i, 8 2x —8, I I (reffec-
tion), and T, =T, (IT, :i l, 8 2x —8, I t—(conju-
gation). Both T, and T, are antiunitary symmetries. We
shall show that the symmetry which is important for the
present discussion is T,. It is broken when q~0, 1.

The classical dynamics is chaotic for suSciently large
EC ki, and the evolution of any initial phase-space dis-
tribution is diffusive along the i axis. The form (1) was
chosen so as to minimize the effect of symmetry breaking
on the classical diffusion constant D(K,q). The ratio
R("I(K,q) D(K,q)/(K /2) can be approximated by an
analytical expression [131. In Fig. 1 we compare (for
K 20) the analytical expression (continuous line) and
the numerical results (crosses) for R " (K,q). The large
deviation between the analytical and numerical results at

q = 0.22 is due to accelerator modes [14]. The remaining
deviations are most probably due to breaking the analyti-
cal calculations at the third order.

The quantum evolution is determined by the spec-
tral properties of the one-step evolution operator U
=exp( i 2

—rl )exp[ —ig(8;k, q)]. For r which is irra-

tionally related to x the spectrum of U is believed to be
pointlike, with exponentially localized eigenvectors [3].
The q dependence of the localization length of this system
is the subject of the present investigation. We checked
that the spectrum of a finite version of U(q) makes the
COE~ CUE (circular orthogonal ensemble to circular
unitary ensemble) transition as q gets larger than 0.

A convenient tool for the study of localization is the
quantum mean staying probability P, (n), defined as the
probability to remain in the "site" I after n kicks, aver-

aged over a large number of i values [12]:

1
P, (n) (PI t(n))=—lim —g PI f(n), (2)~-~ ~ I--a/2

with PI l (n) I (U")I,l I . In the semiclassical limit

P, (n) distinguishes clearly between two distinct time
domains [12]: For n smaller than a critical time n*, the
evolution is essentially classical, and P, (n) is proportional
to the classical probability to stay, which for diffusion in

one dimension is (2rrDn) '/. The only trace of the
quantum evolution appears in the proportionality factor
(weak localization) which will be discussed below. The
domain n )n* is dominated by quantum-mechanical lo-

calization, and P, (n) approaches a constant g
'—the

mean inverse participation ratio. For q =0, P, (n) was

found to scale like [12]
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FIG. l. Solid line: Third-order analytical result approximatee

ing the ratio of the classical diffusion constants R " (K,q).
Crosses: Monte Carlo result for R (d) (K,q). Diamonds:
g(q)/2$(q=0) with r =2)rxO. I/[(J5 —I)/21 and k =K/r In.
all the cases, K =20.

where the sum goes over all classical trajectories (denoted

by a) which satisfy l, (0) l, (n) i (their number proli-
ferates exponentially with n) Th.e action accumulated
along the trajectory is S,. It is measured in units of 6,
and it includes the Maslov index. p, is the contribution
of the trajectory a to the classical probability, p,
= (I/2~) Idl (n)/d8, (0) I

If the Hamiltonian is invariant under a symmetry
operation which does not acct the boundary conditions
i,(0) l, (n) I, we can assign a conjugate trajectory a,
to any trajectory a by applying the symmetry operation
to the trajectory. One should consider only antiunitary
symmetries. Unitary symmetries imply reducibility of
the dynamics and their effects can be taken into account

by working in an appropriate representation. This is not

the case when the symmetry is antiunitary. Among the

symmetry operations listed above, only T, provides a
relevant conjugation, since this is the only antiunitary
symmetry which preserves the sign of I. For q 0, conju-
gate trajectories contribute equal amplitudes to the sum

on a in the semiclassical expression (4). For small q, one

can still use the conjugation symmetry to identify pairs of
trajectories which become a symmetric pair for q 0.
One can approximate p, (q) =p,,(q) =p, (q -0), but

one must take note of the change in the actions. To lead-

ing order in q the action diff'erences b, (q;n)—=S,(q)
—S,(0) —[S,,(q) —S,,(0)] are given by

P.(~)-g 'f(n/g).

The semiclassical expression for P, (n) reads

P, (n) Zp,' exp(iS, ) ),a

(3)

(4)

(s

n

8,(q;n) =
2 k sin g sin[28, (i)],

i

where the a trajectory at q 0 is [I (i),8 (i)];"-t.
The mean staying probability can now be written as

(s)

P," (n q) =4 Z p, cos 4,(qn) +4 Z (p pe)'i exp(i(S —SS))cosq, conte).
a a&P
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The primed summation symbol indicates summation over

pairs rather than individual trajectories. The first term in

(6) (the "diagonal" term) can be viewed as the averaged
value of cos 8', with weights p, over the ensemble of all
trajectories a which contribute to the amplitude to stay in

I after n kicks. The sum over all weights p, adds up to
the classical probability to stay, P, ' (n;q) H. ence, the

diagonal contribution can be written as

P, (n;q) (2g p, cos b,(n;q))P(')(n;q) (7)
a

with p, 2pJP,~") and g'p, 1. According to (5) the
phases 8, are a sum of n terms. For chaotic systems, the
successive sin8, (i) can be considered statistically in-

dependent. Therefore, for large n, the phases 8, form a
Gaussian ensemble with vanishing mean and with vari-

ance (b, ) —,
' n[ —,

' ksin( —,
' xq)] . For n (n* the proba-

bility to stay is entirely dominated by the diagonal contri-
bution, since the nondiagonal term vanishes upon averag-

ing. Hence,
r

kz . 2 xqP, (n;q) P (")(n) ~ 1+exp —n sin

k . 2 xqP, (n;q 0) 1+exp —n sin 2

4

This expression is valid only in the "diffusive" domain. It
shows that the quantal probability differs from its classi-
cal counterpart by a smooth function of time which de-

pends on the symmetry-breaking parameter q in a way

which interpolates smoothly between the limits 2 (for

q 0) and 1 for large q. The factor 2 is the typical
"weak localization" enhancement which is known in

many fields of physics and is due to the invariance of the
system under a symmetry of the type discussed above
[15-17]. The semiclassical derivation predicts how the
symmetry-breaking interaction erases the weak localiza-
tion signature, in excellent agreement with the numerical
simulations (see Fig. 2). If we replace in g(8;k, q) the
term sin(28) by cos(28), we expect P, (n;q) =P, (n;q =0)
since no symmetry is broken. This is confirmed by the
numerical results (dashed ragged line in Fig. 2).

The diagonal contribution to the staying probability di-
minishes as n ' . Hence, the long-time properties of
P, (n) are due exclusively to the nondiagonal term in (6).
This is the semiclassical manifestation of the well-known

fact that localization [here, finite value of P, (n), n )n*]
is due to genuine interference effects. The evaluation of
such nondiagonal sums is one of the less understood is-
sues in the semiclassical treatment of classically chaotic
systems [18]. They involve the pair correlations of classi-
cal actions about which very little is known. Thus, for
the discussion of the time domain where quantum effects
dominate, we must resort to numerical studies.

When 2 k sin(nq/2) ) I we are in the extreme broken-

symmetry regime where P, (n, q ) =P, (n, 0)/2 for all

n &n*. We found numerically that this relation holds
also in the n) n* regime, which implies that ((p)

Pg(P 1). This is equivalent to what is known from
the random matrix treatment of localization in quasi-
one-dimensional disordered systems. Our numerical data
suggest an even stronger result, namely, that in the sym-
metry-broken regime, the function P, (n;P) scales as

1.2 1 n

P, 0.8-

where the function f(x) is the same function as defined
for the time-reversal symmetric case (see Fig. 3). This is
a rather surprising result since f(t) is the Fourier trans-
form of the two-point cluster function for the local
quasienergy spectrum [12]. Equation (9) shows that but
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FIG. 2. Ragged lines: Normalized quantum staying proba-
bilities P, P, (n, q)/P, (n, q 0) for q 0.005, 0.01, 0.02, 005.
Smooth lines: The semiclassical prediction (8). The dashed

ragged line is for an interaction which does not break the sym-
metry (see text).

FIG. 3. Scaled staying probability f(x) =((q)P, (q, n) as a
function of the scaled time x Pn/((q 0) for q=0 (P 1, cir-
cles) and q 0.32, 0.5 (P 2, crosses and diamonds, respective-

ly). k 20/r, r 2n&0.05/[(J5 —1)/21.
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critical-field strength needed to break the symmetry can
be evaluated by requiring that the rms of the action due
to the symmetry-breaking force acting during the locali-
zation time n* = ( is of order h. The study of the role of
symmetry breaking in systems of higher dimension is still

an open problem.
We thank Professor Y. Imry for many stimulating dis-

cussions. R.B. is grateful for financial support by the
Deutsche Forschungsgemeinschaft. This research was

supported in part by grants from the Minerva Foundation
(Miinchen).

A'ote added. —Recently we checked the case of sym-

plectic symmetry by coupling the rotor to a spin degree of
freedom. We found that a11 the scaling relations also
hold for P=4.

FIG. 4. Check of the scaling behavior (10) for various values

of q and k 23.42, 19.67, 17.88, 16.39 for triangles, diamonds,

stars, and bullets, respectively.

for scaling, the same function applies in the p = I or 2 en-
sembles. Such a relation does not hold in the correspond-
ing Dyson ensembles.

A prerequisite for any scaling relation of the type (9) is

that the participation ratio and the classical diff'usion con-
stants are proportional. In Fig. I we show in diamonds
the ratio g(q)/2((q 0). We see that this ratio is close
to unity on average, and that it oscillates in a way which
is rather similar to the corresponding ratio of the classical
diffusion constants.

Lacking the analytical tools to evaluate the probability
to stay for n & n*, we are not able to discuss the smooth
transition of g between the extreme domains. Our nu-

merical work suggests that to a good approximation the
time-averaged P, (n;q) (n )n*), or equivalently I/g(q),
is given by

(10)

Since n*-D, (10) predicts that the ratio Q(q) =g(q
=0)/g(q) scales in y —=D(k, q)k sin (trq/2). Figure 4
shows that overall our data reAect this scaling to a good
accuracy. The origin of the deviations is presently not
understood.

In summary, our numerical results clearly show that
the localization length depends smoothly on the strength
of the symmetry-breaking interaction. For completely
broken symmetry, the participation ratio is twice as large
as its value for the symmetric case. This behavior is

analogous to the theoretical results for quasi-one-dimen-
sional disordered systems. Our work shows that the
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