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New Fermionic Description of Quantum Spin Liquid State
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A novel approach to S = 1/2 antiferromagnets with strong quantum fluctuations based on the
representation of spin-1/2 operators as bilinear forms of real (Majorana) fermions is suggested.
This representation does not contain unphysical states and thus does not require the imposition
of constraints on the fermionic Hilbert space. This property allows one to construct a simple and

effective mean field theory of the spin liquid state. As an example illustrating the basic properties of
this state I consider a model of the Kondo lattice. It is shown that this model has a singlet ground

state; elementary excitations have a spectral gap and are S = 1 real (Majorana) fermions.

PACS numbers: 75.10.Jm, 75.20.Ck

S'=b a'sbp,

b, bg + 6~62 ——2S, (2)

where a' are the Pauli matrices and bt, b are either Bose
or Fermi operators.

The above representation has a continuous gauge
group U(l) (in other words the above bosons or fermions
are charged particles). In a path integral representation
of the corresponding models the Heisenberg exchange
term is decoupled with an auxiliary field A(r, r') by the
Hubbard-Stratonovich transformation and the constraint
(2) is enforced by a local Lagrange multiplier field A(t, r)
Then as usual in a mean Beld approach both auxiliary
fields are treated as weakly fluctuating around their sad-
dle point values. Naturally, the bosonic and fermionic
representations lead to different mean field theories

The traditional picture representing magnets as arrays

of weakly interacting rigid rotors fails to describe systems

with strong quantum fluctuations. Such fluctuations can

be increased by a small value of spin, a frustrated interac-

tion, or a large value of the rank of a spin group. An alter-

native point of view on strongly fluctuating systems has

been gradually emerging from Anderson's original conjec-

ture of a "spin liquid" state in two-dimensional 9 = 1/2
Heisenberg systems [1]. Later he used these ideas to ex-

plain unusual magnetic properties of the copper oxide

superconductors [2] which have attracted much atten-

tion. Anderson's proposal for systems with strong fluc-

tuations is to concentrate on bonds between spins rather

than on spins themselves and thus define slow bond vari-

ables A(r, r') (usually called the RVB—resonating va-

lence bond —order parameter). Thus according to this

approach a theory of the spin liquid should be considered

as a lattice gauge theory where spin waves are composite

particles,
Current efforts to develop a gauge invariant theory of

a spin liquid are based on the Wigner and Schwinger [3]

representation of spin operators:

(Refs. [4,5] provide examples of the bosonic and Refs.
[6—9] of the fermionic mean field theories). It is argued
that this difference will be removed at small energies by
the strongly fluctuating U(1) gauge field present in all
these theories. The presence of this field reflects the
fact that the obtained liquid of bosons or fermions is
incompressible or, in other words, that their charge is
fictitious. The most probable scenario is that the long-
distance gauge force confines the Schwinger particles thus
restoring the conventional spin wave picture. In this case
instead of a spin liquid we would have a conventional
magnet ordered or disordered. Thus the described ap-
proach fails to provide persuasive evidence for a spin liq-
uid state.

In this Letter I describe another approach to the prob-
lem of spin liquids based on an unconstrained representa-
tion of the spin-1/2 operators which I use instead of the
Schwinger-Wigner representation [1,2]. In this approach
the spin-1/2 operators are represented as bilinear forms
of real (Majorana) fermions. The fermions transform ac-
cording to the adjoint representation of the SU(2) group
(i.e. , they have spin 1). This Majorana representation
of spin has been used in quantum mechanics and in field

theory [10].
As will be explained below in detail, the Majorana rep-

resentation has two advantages. The first one is that it
does not require any constraint. The other is that its
gauge group is not U(1) as for the Schwinger-Wigner rep-
resentation, but Z2, i.e. , the corresponding particles are
chargeless. Since the gauge group is discrete, there are
no long-distance gauge forces associated with the U(1)
group and the chargeless Majorana particles remain un-

confined if the spin liquid state is stable.
As an example of a model of a spin liquid I consider

a model of the Kondo lattice. The Kondo lattice can be
viewed as a magnet with interactions between spins be-

ing formed in an indirect way via a polarization of the
conduction electron band (RKKY coupling). The con-
duction electrons not only provide the interaction, but
also screen the local spins reducing their effective mo-

2142 1992 The American Physical Society



VOLUME 69, NUMBER 14 PH YSICAL REVI EW LETTERS 5 OCTOBER 1992

ments and thus making a disordered magnetic ground
state preferable.

I begin the discussion with a brief description of the
Majorana fermions. Let us consider real lattice fermions

rj (r) (a = 1, 2, 3; r labels lattice sites) with the following
cornrnutation relations: H= ) c(k)X (—k)X (k)

ing the integration over the conduction electrons easier.
Namely, one can prove that as far as only the spin degrees
of freedom are concerned the above model is equivalent
to the Kondo lattice with Majorana conduction band:

[n (r) nb(r'))+ = ~.,b~.," . (3)
a=1,2,3;k

+iJ) c b,Xb(r)X,(r)S (r) .

s (r) = -zic b,qb(r)q, (r) . (5)

It follows from (3) that S2 = 3/4. The representation
(5) is reducible, however; it contains too many states.
It can be shown that for a lattice with an even num-
ber of sites N = 2M the dimensionality of the Majorana
Hilbert space is equal to 2s ~; 2+~ times larger than the

dimensionality of the spin space. Nevertheless, all states
are physical; the representation just replicates states with
the right value of S2 many times. This replication can
be understood as a gauge symmetry of the representation
(5). Namely, the expression for spin operators is invari-
ant with respect to the local Z2 transformation of the
Majorana fermions:

In mathematics the algebra (3) is called the Clifford
algebra. For the particular case of a single site lattice

coincide with the spin-1/2 matrices. In general the
commutation relations (3) can be obtained from a quan-
tization of the following Lagrangian:

I,, = —) tl. (r, t)oj.q. (r, t) .
j-

(4)
r

It is easy to check that the following representation
reproduces the commutation relations of the spin opera-
tors:

((x(-~ -k)x(~, k))) =, 1
(10)

Thus it coincides with the conventional Green's function,
but since the Majorana fermions are real it does not con-
tain an arrow. The diagrammatic expansion for spin-spin
correlation functions contains only correlation functions

of the spin density operators crc(r) = a„~(r)cr'&a„p(r)
and it is easy to see that all correlation functions of the
original spin density operators coincide with the correla-
tion functions of the operators a'(r) = —ic,bcXb(r)X, (r).
Indeed, the Feynman diagrams in both representations
are proportional to each other because the Majorana
fermions have the same Green's functions as the con-
ventional ones; the exact equality is achieved due to the
identity of the numerical factors:

2Tr[cr ' cr "] = (—i)"Tr[c" e'"],

The band Majorana fermions are neutral and satisfy the
following commutation relations:

[X,(k), Xb(P)] p ——6,bb(k + P) .

Their Green's function is given by

[q(r) = 0, 1].
The Majorana representation of spins is going to work

well in the magnetic systems with disordered ground
states. For such systems it is possible that low-lying exci-
tations are represented by the Majorana fermions them-
selves and thus the situation can be described by some
simple RVB-type mean field theory.

As an example of such a theory I consider a three-
dimensional two-channel Kondo lattice model with the
following Hamiltonian:

H = ) c(k)a„ (k)a„ (k)
n, a,k

+) Ja„(r)o pa„p(r)S(r'),

(E )bc Esbc &

where the factor 2 comes from summation over the favor
indices of the conventional fermions.

When the transformation to the effective Hamiltonian
(8) is done all irrelevant charge degrees of freedom of
the conduction band are decoupled (it will not happen
so easily in the Kondo lattice problem with conventional
conduction bands where electrons do not carry additional
Havors [11)). With the Hamiltonian written in the form
(8) it is easy to recognize what the order parameter is.
Representing the local spins as in Eq. (5) I decouple the
interaction as follows:

J) .(x n )(xbnb) - &(x.n. )
ahab

where n = 1, 2, o. are the Pauli matrices, and I require
the total particle-hole symmetry e(k) = —c(—k).

The model (7) is chosen as a toy model to demon-
strate properties of the spin liquid state. It turns out that
due to the special symmetry properties of this model the
charge degrees of freedom decouple completely thus mak-

&(r) = —~) .([X-(r)n-(r)]).

In this approach the order parameter weakly fluctuates
around its saddle point value and the Majorana ferrnions
are elementary excitations. Their Green's functions are
equal to
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&(~ k) = ((%(-~ —k)n-(~ k)))
iver —e(k)

i~„[i~„—e(k)] —6'

D(cu, k) = ((y (~, —k)X (u), k)))
'L(d~

i~„[i~„—e(k)] —&~

(13)

&(k) = + [4e(k)'+ &ol"' (14)

where Ao is a saddle point value of the order parameter.
This spectrum has an indirect gap, TK ——2A~z/D

The spin susceptibility in the mean Beld approximation
is equal to

T . dk3
y(O, q) = —) G(& —~, q —k)G(~ k) . ( 5)

(2~)'
Their poles give the following threefold degenerate spec-
trum: It is strongly enchanced around the reciprocal lattice

vector Q:

X(~ =0, Q) = (e2 + 4g2)1/2 + e 1 1
de p(e) (e2 + 4g2)1/2 e (e2 + 4+2)1/2 (16)

The main contribution to the imaginary part at low frequencies comes from the region close to the zone boundary:
D Iass.ume that in this region e(k) = D —k /2m. Then the imaginary part of the magnetic susceptibility at

positive frequencies is given by

2 ma2D s/ 0
Imps l(A, Q —bq) = —[1+ (bq) /16mD]

TQ Tg

(a is a lattice constant).
Imp(A) has a threshold-type square root singularity which reveals the composite nature of the spin excitations.
Fluctuations of the order parameter are collective excitations. Integrating over the fermions I get the following

Ginzburg-Landau-type effective action:

2

A = p(0) d~d z —6 ln + 2[(B 6) +v'(M. ) ]2 0 2 0
(18)

where p(0) is the conduction band density of states on
the Fermi level and v is of order of the Fermi velocity.

The fluctuations of 4 have a gap as expected and are
not likely to provide significant corrections to the mean
field picture.

Thus we can say that the above Kondo lattice model
demonstrates two properties qualitatively predicted for
the spin liquid state [1,2]: Its elementary excitations are
fermions and there is no coherent propagation of spin
waves.
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