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Quark Confinement and Number of Flavors in Strong Coupling Lattice QCD
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The problem of whether there is a constraint on the number of flavors for quark confinement in QCD
is numerically investigated on a lattice with %'ilson fermions as quarks. It is shown that even in the
strong coupling limit, when the number of flavors exceeds 7, quarks are not confined and chiral symme-
try is not spontaneously broken for light quarks.

PACS numbers: 12.38.Gc, 11.30.Rd

The fundamental properties of QCD are quark con-
finement, asymptotic freedom, and spontaneous break-
down of chiral symmetry. It is well known that if the
number of flavors exceeds 17, asymptotic freedom is lost.
Then the question which naturally arises is whether there
is a constraint on the number of flavors for quark con-
finement and/or the spontaneous breakdown of chiral
symmetry. Here we would like to investigate numerically
quark confinement and chiral symmetry versus the num-

ber of flavors, taking the Wilson formalism [1] of fer-
mions on the lattice for quarks, because this is the only
known formalism which describes any number of flavors
in terms of a local action. We use the same method as in

a previous paper [2] to discriminate the phases of QCD
with various numbers of flavors: With the quark mass
defined through the axial-vector-current Ward identity,
the pion mass at zero quark mass determines whether
chiral symmetry is spontaneously broken or not. It will

turn out that confinement is closely related with the spon-
taneous breakdown of chiral symmetry.

We generate gauge configurations using the hybrid-
molecular-dynamics R algorithm [3] with the molecular
dynamics time step hr 0.01, unless otherwise stated.
The inversion of the quark matrix (x =D 'b) is made by
a minimal residual method or a conjugate gradient (CG)
method. The lattice sizes are 8 x10x T (T=4, 6, or 8)
and 18 x 24 & T (T 18). When the hadron spectrum is

calculated in the former case, the lattice is duplicated in

the direction of the lattice size 10, which we call the z
direction. We use an antiperiodic boundary condition for
quarks in the t direction and periodic boundary conditions
otherwise.

We investigate confinement in the strong coupling limit

P 0.0 (g eo, P 6/g ). Although quark confinement is

rigorously proved at P=0.0 in the pure gauge theory
when the action is local as in the case of the standard
one-plaquette action [4], there is no proof for confinement
in full QCD.

Let us begin with the case of Nf =18, because asymp-
totic freedom is lost for Nf ~ 17 and therefore we may
expect quark nonconfinement here. We take T =4.
Shown in Fig. 1(a) are the results of the Polyakov loop
and the Wilson loop W(1 x 1 ) for various hopping param-
eters. The data with large symbols are for long runs:
They are obtained by averaging over the last z =500 [at
each r =integer here and in the following for W(1 x 1)
and Polyakov loop] after a thermalization of r =300-

500. The others are for a cycle of changing hopping pa-
rameter: Starting from the last configuration of the long
run at K 0.25, the hopping parameter first decreases
down to 0.17 and then the hopping parameter increases
from 0.19 to 0.205 with about ~ 20 at each hopping pa-
rameter. The data are taken over the last r 10. The
data of the long run show that the statistical fluctuation is

very small and therefore the statistics of the short run is

good enough for the thermalization and the data taking.
Hence the statistics in the following is similar to that of
the short run. The errors estimated by the jackknife
method are smaller than the symbols in the figure here
and in the following. We note that there are jumps of the
Polyakov loop and the W(1 x I) around K 0.20. The
magnitude of the jump is prominent for W(1 x I). This

I I I
I I I I [ I I I I i 1 t I I i I I I t i I 1 I I

0.6—

04—

0.2—

0.0
3.5

i I I I I I I I i I

I

45 5
1/K

I I I I I I I

I

5.5 6

(b) 4 I I I I i I I
I I

I i I I I I
i

I

-1
3.5

o
K=0.25

I ~ I I I I

I

4 4.5 5 5.5
1/

FIG. 1. Results for NI 18 at p 0.0 on the T 4 lattice
with hr 0.01. (a) W(l x 1) (squares) and Polyakov line (cir-
cles). The large symbols are for long runs. (b) m2 (solid cir-
cles) and 2mv (open circles).
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(1 —16K') (I —4K')
coshm, =1+

4K'(2 —12K')
4K sinhm

2mq =m
1 —4K coshm~

(2)

Both m and mq given by these formulas vanish at
K 0.25. Thus in this phase the quark is confined, and
chiral symmetry is spontaneously broken in the sense that
if we could take the chiral limit, m, would vanish.

On the other hand, between K=0.20 and 0.25 the m~
values suddenly become very small and are almost zero,
and the m, 's are larger than that at K =0.19. In this re-
gion where mq is very small, chiral symmetry is almost
exact and manifest as is seen in the degeneracy of z and
b, p and A1, as well as baryons and their parity partners:
At K =0.25, m„=1.584(2) and ms=1.64(2), m~
=1.61(1) and m~, =1.64(2), mN=2. 81(6) and m~~-&
=3.0(3), and ma =2.81(3) and m~~-& =2.8(2).

The mass of pion at K=0.25 is about 1.6: We have
made two independent calculations with h, z =0.01 and
0.005 at K=0.25 and confirmed that the results for the
quark mass and the pion mass are completely consistent
with each other. The lowest Matsubara frequency for a
state of two quarks is 2rr/T (=1.57 for T =4). The pion
mass is almost equal to this value or slightly greater than
it. Therefore in the following we call this state and a
similar state a quark deconfining state.

Thus we conclude that for Nf =18 quarks are not
confined and chiral symmetry is not spontaneously broken
for K ~ 0.20 at P =0.0 on the T=4 lattice. At K =0.20
there is a jump of m, which indicates that the decon-
fining transition is first order.

We interpret the above phenomena as follows: When a
quark mass is heavy in the sense that it is much larger
than the inverse of the lattice spacing, the effect of quark
loops should be negligible and therefore the system
should belong to the same universal class as the quenched
QCD. Thus the quark should be confined. When the
quark mass becomes smaller, the effect of quark loops be-
comes crucial and there is a possibility that the system
enters into a new phase because of this effect. When Nf
is as large as 18, this effect indeed triggers the transition
observed above.

To investigate whether the transition is a finite temper-

result indicates that some kind of phase transition occurs
around K =0.2.

To see more closely what happens, we calculate the
hadron spectrum and the quark mass for various hopping
parameters, typically on 20 configurations separated by
z =25. The definition of the quark mass is identical with
that in Ref. [2]. From K =0.17 to K =0.2, the pion mass
m and the quark mass mv are, as is shown in Fig. 1(b),
in good agreement with the strong coupling calculations
[1] without quark loops (the rho meson mass m~, the nu-
cleon mass mnt, and the delta mass mq also agree with
the corresponding mass formula):
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FIG. 2. Results for Nf 18-6. (a) Number of iterations
needed for the quark matrix inversion by CG. (b) W(l x 1).

ature transition or a transition at zero temperature, we
have to investigate the T dependence of the transition.
This will be discussed later in the case of Nf =7.

Now, the issue is to what number of flavors the proper-
ty observed for Nf =18 holds. To investigate this prob-
lem we gradually decrease the number of flavors from

Nf =18 by 2 units at a time down to Nf =8 and then to
Nf =7, fixing the hopping parameter at K =0.25. Start-
ing from the last configuration at K=0.25 for Nf =18,
we make simulations of about z =20 for each flavor, tak-
ing the last configuration as the starting configuration of
the next flavor. With decreasing number of flavors,
W(I &1) averaged over the last r =10 decreases and the
number of iterations needed for quark matrix inversion

(by CG) increases as shown in Fig. 2(a). However, up to
this point the changes are smooth and nothing peculiar
happens.

When we switch the number of flavors from 7 to 6, a
sudden change occurs. The number of iterations for the
quark matrix inversion gradually increases and exceeds
10000 at r =9. In parallel with this, W(1 x I) gradually
decreases down to 0.08 at r =8 [see Fig. 2(b)]. Thus the
case Nf 6 is completely different from the cases Nf
=7-18.

To see further the difference between Nf =6 and the
other values, we calculate the eigenvalues of ysD for
gauge configurations, by varying the hopping parameter
in D (which we call the valence hopping parameter K„~)
around K„,~=Q.25: For Nf =18, 12, 8, and 7, one con-
figuration for each flavor is chosen after thermalization,
and for Nf =6, one configuration at z =8, although this is
not an equilibrium state as discussed above. We see a
clear contrast between the Nf =6 case and the others:
There are no zero eigenvalues around K„,~=0.25 for

Nf =7, 8, 12, and 18 and the smallest absolute eigenvalue
gradually decreases from Nf 18 to 7 as 0.23, 0.16, 0.07,
0.04. On the other hand, for Nf =6 there is a zero eigen-
value at K„,~ =0.258, as is shown in Fig. 3 for the cases of
Nf =6 and 7. Our previous works show that the existence
of zero eigenvalues around K, is common to the case
where the quark is confined, in contrast to the finite tem-
perature deconfining phase [2,5]. Because of this fact it
is very difficult to invert the quark matrix at K-K, in

the confining phase, while it is easy to do so in the
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deconfining phase: We will use this difference later as an
indicator to discriminate the two phases.

The above results imply that at K =0.25 the phase for
Nf 16-7 is identical to that of Nf =18 and is different
from that of Nf =6. To strengthen this assertion we will

investigate in more detail the cases of Nf =7 and 6 in the
following.

The results of W(1 x 1) for Nf =7, together with those
of the quark mass and the pion mass, on the T =4, 6, 8,
and 18 lattices are given in Fig. 4: The data between
K 0.23 and 0.24 for T 4 are with hr =0.005 and the
data at K 0.23 for T 6 are with hr 0.0025, because
we need smaller hr as the smallest absolute eigenvalue of
the quark matrix D becomes smaller. W(1 x 1) for T=4
has a jump between K 0.24 and 0.245. The W(1 x1)
values for T 18 at K=0.25 and 0.245 are completely
consistent with those for T=4. This implies that the
transition is not a high-temperature phenomenon but a
phenomenon at zero temperature, because if it were a
finite temperature transition, the transition point would
move. towards a larger hopping parameter for T =18 and
therefore W(1 x 1) at K 0.245 for T=18 would take a
smaller value around 0.1. In accord with this behavior of
W(1 x 1), m also shows a jump between K=0.24 and
0.245. From K 0.20 to 0.24, m is consistent with the
strong coupling result without quark loops given by Eq.

(1). The m values for K~ 0.245 are completely off the
curve given by Eq. (1). The rn, 's at K =0.25 are
1.251(5), 1.136(4), 1.137(5), and 1.121(2) for T=4, 6,
8, and 18, respectively. m decreases slightly with T.
The m 's for T=6, 8, and 18 are larger than the lowest
Matsubara frequency. The Polyakov loop also has a
jump between K=0.24 and 0.245. Therefore we inter-
pret the state for K~ 0.245 as a deconfined state. Thus
we conclude that when the quark mass is light, the quark
is not confined and chiral symmetry is not spontaneously
broken for Nf 7 at zero temperature. Although we be-
lieve that this confirmation is enough for the cases for
Nf 8-18 because the Nf 7 case is the critical case, we
have checked a similar thing for the Nf 12 case.

As mentioned already, at K 0.25 the Nf =6 case is

completely different from the cases Nf 18-7. One
strong possibility is that the point K=0.25 at P=0.0 for
Nf =6 belongs to the confining phase. To see whether
this is correct we investigate the problem [6l of whether
the finite temperature transition line K, (P) on the T=4
lattice crosses the chiral limit line K, (P) at finite P, by
monitoring the number of iterations of CG needed for the
matrix inversion at several points on the line K, (P):
K 0.22, 0.24, 0.245, 0.2475, and 0.2495 at P =4.0, 2.0,

(a) 0.08

0.06—

0.04--

I
I I I i I 1 1

I
I [ I I 1

N=7
f

(a) 0.3

02—
0.02—

00

-0.02— 01
18

-0.04--

-0.06--

-0.08
0.245 0.25 0.255 0.26 0.265

val
(b)

3.8 4 4.2

25
N

4.4 4.6
1/K

4.8 5 5.2

0.02

0.01--

I I

I I I f I I I I / I I I ] I I I

N, W- 2.0—

1.5--

1.0—
0.0

-0.01--

4

~ ~

ss,

ass!

~ ~~ ~
~ ~ ts
;ss ~
aaao

~ pe
0.5—

0.0—

-0.02
0.24

I I I I I I I I I I

I
I I I I I I

0.245 0.25 0.255 0.26

val
FIG. 3. Eigenvalues of y&D vs K„,&. (a) Nf 7. (b) Nf =6.
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FIG. 4. Results for Nf 7 at P 0.0: Circles, T 4; trian-
gles, T 6; squares, T 8; and diamonds, T 18. (a) IV(1 x I).
(b) m, and 2mv.
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1.0, 0.5, and 0.1, respectively [7]. As mentioned earlier,
in the deconfining phase the number of iterations is
moderate close to the critical line, while it is quite large
in the confining phase. We find that the iteration num-

bers are 170-890 for P 4.0-0.5, while it exceeds 10000
at tI 0.1. In accord with this behavior, 8'(I X I) de-

creases to 0.04 at r -Il for P 0.1, while the other
values are larger than 0.2. The increase of the number of
iterations together with the decrease of W(1 x I ) strongly
implies that the line K, (P) crosses the line K, (P) between

P 0.1 and 0.5. (For Nf 2 on the T 4 lattice, it
crosses above P 2.0.) The work to strengthen this state-
ment, by identifying the crossing point in more detail and

by measuring physical quantities around the crossing
point, is in progress. The details of this investigation will

be given elsewhere.
The crossing of the line K, (lj) and the line K, (P) at

finite P implies confinement at smaller P for K~K, .
Therefore it leads to quark confinement for K~ K, at
P 0.0 in the case of Nf 6. To see whether what really

happens is consistent with this observation, we make the
calculation at P 0.0 for Nf 6. If a zero eigenvalue ex-
ists around K 0.25, we will be unable to calculate the
physical quantities at K 0.25 by known algorithms.
Here we are able to calculate physical quantities up to
K 0.24 within reasonable CPU time: K=0.20, 0.21,
0.22, 0.235, and 0.24 (b,r 0.005 for K 0.24). The re-
sults for m, and me are completely consistent with Eqs.
(1) and (2) up to K 0.24. Thus, up to the point that we

have been able to calculate, the results support the con-
clusions that the chiral limit is K=0.25 and that the
point K 0.25 belongs to the confining phase.

Now we state the major conclusion of this Letter: For
Nf ~ 7 quarks are not confined and chiral symmetry is
manifest for light quarks at P 0.0. (Although we have

not investigated the case for Nf ) 18, we conjecture that
these features hold for this case also. ) Combining the
above results with further analyses for Nf 12 and 8 that
we have made, we can draw a map of the deconfining-

transition hopping parameter Kd versus the number of
flavors, as shown in Fig. 5.

The fundamental problem which remains is whether
this property holds in the continuum limit. This is

beyond the scope of this Letter. The numerical work to
investigate this problem is in progress. We hope that we

are able to report the result in the near future.
The dependence of chiral symmetry on the number of

flavors in the Kogut-Susskind formalism was previously

investigated [8]. There was no indication that for a large
number of flavors chiral symmetry is recovered. Howev-

er, after this work was completed, we became aware of a
report [9] that there is an indication of a bulk transition
for Wf 8. It is not clear whether the phenomenon re-

ported is related to the transition observed by us. Further
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FIG. 5. Phase diagram at P 0.0: Deconfining-transition

hopping parameter Eq vs the number of Aavors. The line is to
guide the eyes.
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investigation to clarify this point is certainly necessary.
The numerical calculations on the 8 & IOX T (T 4, 6,
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