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Geometry and Foams: 2D Dynamics and 3D Statics
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We discuss the implications of the classical Gauss-Bonnet formula to foam in two and three dimen-
sions. For a two-dimensional foam it gives a generalization of the von Neumann law for the coarsening
of foams to curved surfaces. As a consequence of this we find that the stability properties of stationary
bubbles of such a froth depend on the Gaussian curvature of the surface. For three-dimensional foam
we find a relation between the average Gaussian curvature of a soap film and the average number of ver-

tices for each face.

PACS numbers: 82.70.Rr, 68.10.—m

Foams are ubiquitous, aesthetically pleasing, and serve
as a paradigm for a wide range of physical phenomena
[1]. Among the manifold uses of foams in technology are
filtration, insulation, and as substrates for chemical reac-
tions. The coarsening of two-dimensional (2D) foams is a
model for the growth of crystalline grains in thin metallic
films [2]. In this paper we describe two principal results
about soap froth. The first and main result, Eq. (3)
below, is a generalization of the von Neumann coarsening
law [3]. It describes the evolution of two-dimensional
foam on a curved surface due to the diffusive gas transfer
between bubbles. The second, Eq. (5) below, relates {n),
the average number of vertices per face, and the average
Gaussian curvature, {K), of the soap films, for three-
dimensional foams. Equation (3) has interesting conse-
quences for the stability properties of ‘“large” bubbles,
which can be stable or unstable depending on the Gauss-
ian curvature of the surface to which they are confined.
Equation (5) has the consequence that it gives the bound
(n)>5.104 . . . for isobaric foam. Equations (3) and (5)
are united by the fact that both ultimately trace back to
the classical Gauss-Bonnet formula. It is interesting that
in two dimensions the Gauss-Bonnet formula leads to a
dynamical law while in three dimensions it leads to a law
about statistical (static) properties.

The study of foam coarsening on curved surfaces is of
some interest in the context of grain growth of thin coat-
ings of surfaces [2]. The von Neumann law has proven to
be a very useful tool in the study of (planar) grain
growth, although the reasons for its success are not fully
understood. As a consequence, it is not clear if this suc-
cess is special to the planar case, or whether the soap
froth analogy also gives a good description of grain
growth on curved surfaces. Thus, tests of Eq. (3) and its
ramifications would contribute to a better understanding
of the validity of the soap froth model of grain growth.

(1) Coarsening of 2D foams on curved surfaces.— The
von Neumann law was originally derived in 1951 [3] for
planar foam such as might be obtained by confining soap
solution between two planar parallel glass plates [4]. It
states that, for each bubble, dN/dt=(zxa/3)(n—6).
Here N is the number of gas molecules inside the bubble,

n is the number of vertices it has, o is the line tension,
and x is the diffusion constant of the gas through the
bubble walls. This law is remarkable in its simplicity, ex-
hibiting no dependence whatsoever on the bubble’s neigh-
bors, nor on its own detailed shape or size. Our first re-
sult is concerned with the coarsening of foams con-
strained to curved surfaces, and the generalization of the
von Neumann law to such cases.

Consider a two-dimensional foam constrained to lie on
a surface X, which is smooth, but otherwise arbitrary.
The foam (sometimes called a “late stage” or “‘polygo-
nal” foam) consists of a set of vertices connected by
edges, three of which emanate from each vertex. We re-
quire that at all stages in its evolution the foam be in
mechanical equilibrium; that is, that there be no net force
on either vertices or edges. We shall consider idealized
foams in the sense that the edges are all identical (in the
sense that o and k are the same), of zero thickness, with
pointlike vertices, and with no Plateau borders. The con-
ditions for the balance of forces imply Plateau’s laws,
namely, (1) the angle between a pair of edges common to
a vertex is 27/3 (this holds also on curved surfaces); (2)
the edges, on a flat surface, are sections of circles. As we
shall see, on a curved surface, the generalization of (2) is
that edges have constant geodesic curvature.

Mechanical equilibrium of an edge means that at each
point x of the edge the forces Fp (due to the pressure
difference, AP=Pi, — Pou, across the edge) and F, (due
to the line tension on the arc) are balanced on the tangent
plane at x. For the planar case this yields the Young-
Laplace equation AP =¢/R, where R is the (signed) ra-
dius of the circular arc. This relation must be modified
for nonflat surfaces.

To facilitate our discussion, we introduce an orthonor-
mal triad of vectors defined at each point x of an edge
(see Fig. 1). Let n be the unit normal to the surface Z, t
the unit tangent to the edge (oriented so that the edges of
the bubble are traversed counterclockwise), and y=nXt.
The vectors t and y span the tangent plane at x. Consid-
er an elemental portion of an edge of arc length /. The
force Fp lies in the tangent plane, and is parallel to 7; its
magnitude is APS/. Hence Fp=—APésly. The force F,
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FIG. 1. A curved surface, T with the triad of vectors (n,t,y).

is the resultant of the two forces acting in the tangential
direction at each end of the portion of the arc. At each
end, the line tension exerts a force ot(x), so the total
force Fo(x) =0(t(x+61/2) —t(x —61/2)) =o(dt/dx)él.
If the surface is flat, dt/dx is parallel to y, but in general
it has a component in the n direction, which, since the
foam is assumed restricted to the surface, is balanced by
forces normal to the substrate. Hence, the balance of
forces takes place in the tangent plane, and yields

AP =0C,, )]

where Cg=y- dt/dx is the geodesic curvature of the edge
at x [5]. Since AP is constant along an edge, the edges
have constant geodesic curvature. In the planar case we
recover the Young-Laplace law, since Cg =1/R.

An alternative, thermodynamic derivation of Eq. (1)
makes use of the minimization of the free energy

Z F(T,Aj,Nj)‘f' Z O'(T)lj,
j € bubbles Jj € edges

where F(T,A,N) is the (bulk 2D) Helmholtz free energy
of a bubble at temperature T, of area A4, and containing
N gas molecules. /; is the length of the jth edge. Ther-
modynamic equilibrium says that the total free energy is
stationary under variation of the jth edge. Variation of /;
leads to a variation in Ay, and A;,, the areas of the two
bubbles having /; as an edge, so O6F (T, Aout, Nout)
+8F(T,Ain,Nin) +06l;=0. Now since 8F (T, Aout, Nout)
= — PoudAou (and similarly for the “in” bubble) and
8(Aou+ Ain) =0 we get —APSA;j+ 06/ =0. This yields
Eq. (1) since C, =81/5A (see, e.g., [5], Vol. 4, Chap. 9).

We assume that a bubble evolves owing to pressure-
difference-induced diffusion of gas between neighboring
bubbles. That is, dN/dt = — k2, APlx, where the sum
is over the edges of the bubble. We next observe [6] that
this is precisely one of the terms in the Gauss-Bonnet
theorem applied to a (polygonlike) bubble B on a surface.
The Gauss-Bonnet theorem states that

LKdA-l-faBngx+2’:(n—aj)=27r, )

where K is the Gaussian curvature of the surface (i.e.,

K=1/R|R,, where R, are the two principal radii of cur-
vatures), B is the polygon’s surface, dB is its perimeter,
and the sum is over the internal angles a; at its vertices.

Applying Eq. (1) to the relation for diffusive transfer,
we obtain dN/dt = —xo 2, C, (k)lx. Combined with Eq.
(2) (specialized for the case where Cy is constant over the
various edges comprising the bubble perimeter, and all
angles a; =2n/3), we obtain our main result:

1 dN _ =
L aN _nr, _ _
P 3(n 6)+LKdA (3)

When the surface is flat, K =0, and we recover the von
Neumann law. It should be noted that, for the planar
case, this same equation governs grain growth in thin me-
tallic films [7] (and, e.g., the growth of a grain of some
orientation in the Ising and Potts models [8]). This is a
consequence of the fact that a point on a grain boundary
is believed to have a local velocity v given by v o« —1/R,
where R is the local radius of curvature [9]. [In this case,
the left-hand side of Eq. (3) has dN/dt replaced by
dA/dt]

There is an important difference between bubbles on
surfaces with negative K and those on surfaces with posi-
tive K. If K > 0, stationary bubbles (dN/dt =0) exist for
certain areas, provided that n <6. For example, on a
sphere of radius R (large), bubbles with n <6 vertices
whose areas are n(6 —n)R?/3 are stationary. When
K =0, hexagons are stationary irrespective of size. For
K < 0 only bubbles with n > 6 vertices are stationary, and
the size and number of vertices are related.

An important consequence of Eq. (3) is that no bubble
on a positively curved surface is stable, while all station-
ary bubbles on a surface with K <0 are stable. This is
seen from Eq. (3) by perturbing off a stationary solution.
If K> 0, enlarging the bubble’s area will cause gas to
flow into the bubble, further enlarging it, while shrinking
engenders further shrinkage. In contrast, a perturbation
of a stationary bubble on a surface with K <0 will die
out; the bubble will return to its original size at an ex-
ponential rate. Hexagons on a planar surface are the
borderline case and are indifferent to changes in area.

The above observation implies that the ultimate fate of
a two-dimensional foam on a positively curved surface is
to evolve to one single bubble, covering the entire surface,
while foam on a negatively curved surface will evolve to a
final state where the bubbles have seven vertices or more,
with each bubble having achieved its stable shape and
size [10].

(2) A statistical property of 3D foams.—In the
remainder of this paper, we shall be concerned with
three-dimensional foams which are comprised of poly-
hedral-like bubbles. A three-dimensional polyhedral
foam may be thought of as a collection of vertices, each
of which is common to four edges, six faces, and four
bubble cells. Each edge is common to three faces, and
each face to two bubbles. The angle @ between any pair
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of the four edges common to a vertex is the tetrahedral
angle, @=arccos(—1/3), and the dihedral angle between
any two faces with a common edge is 27/3.

The von Neumann law does not have an analog in
three dimensions in the sense that a soap bubble with
sufficiently many faces is guaranteed to grow. (It is pos-
sible to construct counterexamples to this assertion [11].)
Nevertheless, the tool that led to the von Neumann law in
two dimensions, namely, the Gauss-Bonnet theorem, can
be applied to a foam in three dimensions, and as we shall
see it gives a relation and inequalities for static proper-
ties.

Consider a given bubble of the foam. The Gauss-
Bonnet formula holds for each of its faces where now K is
the Gaussian curvature of a face [12]. Each edge is com-
mon to two faces of the bubble, and the geodesic curva-

23

faces

fmedA+2 Y

edges

where V and F are the total number of vertices and faces
in the foam, respectively. But y!+y2+93=0 at each
point along the edge, since the three vectors lie in a plane
and the angle between each pair is 2n/3. Next, denote
the average value of [r.ccKd A by (K), and express V in
terms of F. Since each vertex is common to six faces, if
the average number of vertices per face is (n), then
V =(n)F/6. Canceling like factors we obtain our second
main result:

(K)+{n)(x—0) =2r. (5)

This formula relates the average number of vertices per
face to the average (integrated) curvature of the faces,
and holds for all three-dimensional polyhedral foams in
the limit where the surface-to-volume ratio is small [13].

Observations on a wide variety of foams yield values
for (n) close to, but not precisely coinciding with,
5.104... [14]. This value has a history in statistical
packing problems [15,16]. From Eq. (5) we see that it is
obtained for (K)=0. Since there are examples of foam
with (K) <0 this value does not hold in general. (In fact,
we do not know if it ever holds.)

As an application of Eq. (5) which leads to an inequali-
ty on {n) consider the case of isobaric foam, i.e., foam
where all bubbles have the same pressure. This is the
case for periodic foam where a bubble is a unit cell. The
equality of pressure of neighboring bubbles say that the
soap films are minimal surfaces and have zero mean cur-
vature. This implies that the Gaussian curvature is nega-
tive. It follows that for isobaric foam {n) > 5.104.... It
is amusing that the periodic foam constructed by Lord
Kelvin [17] has {n)=5.143, and so comes surprisingly
close to, but still consistent with the general lower bound.
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1424 3y, dt —9)=
fedgc(y +y2+93) dXdX+l2V(7r 0) =4nF ,

ture C, of the edge depends on the face being considered,
since, although dt/dx is a property of the edge alone, ¥
points in different directions for different faces. Because
of this, summing over the faces of a given bubble does not
yield a simple relation. However, summing over all the
bubbles in the foam leads to cancellations and to a simple
relation involving average quantities.

To properly account for signs we note that Eq. (2) is
invariant under change of orientation of the surface B.
To properly account for multiplicities we note that each
face is common to two bubbles, each edge to three bub-
bles, and each vertex to four bubbles. Therefore, each
face appears twice in the sum, and each vertex twelve
times (since for each bubble, it is common to three faces,
and four bubbles meet at a vertex). Each edge must be
counted twice for each of its three common faces. Com-
bining all terms, we see that, up to boundary terms,

(4)
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