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Localization of Langmuir Waves in a Fluctuating Plasma
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We have made preliminary observations of the spatial localization of an electron plasma wave in a
fluctuating plasma. The eAect is related to the general wave phenomenon known as Anderson localiza-
tion which is applicable both quantum mechanically and classically. Our experiment consists of a mul-

tipole discharge plasma in which a launched ion-acoustic mode provides a density fluctuation. We have
observed an increase in the damping of an additional launched electron plasma wave which follows the
predictions of a Mathieu-type equation for the wave amplitude evolution.

PACS numbers: 52.25.Gj, 52.35.Fp

We have performed a simple plasma experiment that
shows the relevance of the concept of localization [1] by
disorder to the problem of wave propagation in a fluctuat-
ing plasma, which has been previously studied numerical-

ly [2] and experimentally [3] in the light of mode cou-

pling theory. The experiment consists of a multipole
discharge plasma in which a launched ion-acoustic mode
provides the density fluctuation. We have observed an in-

crease in the damping of an additional launched electron
plasma wave. This damping, which does not involve any
dissipative mechanism, is related to the general wave

phenomenon known as Anderson localization.
Anderson localization (for a general review on localiza-

tion, see Thouless [4]) can be described in quite simple
terms by considering the propagation of a wave through a
static disordered medium in one dimension. As the wave

travels through the disordered medium, it undergoes

many random scatterings. One might expect that these
random scatterings would simply cause the envelope of
the wave to randomly distort as the wave propagates
through the system. In fact, something more interesting
happens. The wave amplitude can exponentially increase
as a function of distance along the system and then ex-

ponentially decrease, thus forming a spatially localized
concentration of wave energy. The disorder of the medi-

um has formed this localized concentration of wave ener-

gy in much the same way a resonant cavity enhances the
wave energy at its resonant frequency. Similar to v hat

happens in a resonant cavity, the wave energy has been

enhanced by the constructive eA'ects of repeated wave

scatterings. However, unlike a resonant cavity, these
wave scatterings have occurred at many diAerent spatial
locations. Anderson localization in one dimension is a
robust efI'ect. For almost any realization of the disorder
in the one-dimensional medium the wave will exhibit lo-

calization somewhere; moreover, localization will occur
no matter how weak the one-dimensional disorder is in

magnitude.
Although localization was first discussed in the context

of solid-state physics, it is in fact a rather general wave

phenomenon. In the early 1960's Mott and Twose [5]

and Borland [6] discussed the problem of the distortion of
the electron Bloch function when it propagates through a
randomly distorted one-dimensional potential field rather
than through a purely periodic one. In a more classical
setting, Nickel [7] studied theoretically and experimen-
tally the transmission of microwaves through a waveguide
filled with slabs of randomly varying dielectric constant.
Localization eA'ects have been experimentally observed in

conductance measurements in thin metal films and wires
and in semiconductor channels at low temperature [8], in

the propagation of light through liquid suspensions of
dielectric spheres [9], in the classical sound vibrations of
a system of beads on a wire [10], and in surface water
waves in an irregular water channel [11]. Localization
has also been invoked to explain positron mobility obser-
vations through a gas of helium [12].

Another interpretation of Anderson localization is that,
with a probability equal to 1, the wave meets large re-
gions where the potential has a periodicity that implies
gaps in the Floquet or Bloch analysis for the given ener-

gy. This is precisely the case of the experiment we are
going to describe.

Longitudinal electron plasma waves in an unmagnet-
ized plasma are described by an equation of the type

where ilr is the electric field, and V(x, t) =to~(x, t)/3vr
The position x is taken along the direction of propagation
of the plane longitudinal wave; to~(x, t) =n(x, t)e /som is

the square of the plasma frequency and is proportional to
the plasma density; and vr =(AT/m) 't2 is the electron
thermal velocity. We consider the case where random-
ness is produced by a one-dimensional spectrum of non-

dispersive ion-acoustic waves: The random density is

moving in the plasma with a constant velocity vr =(vT/
M)' (M is the ion mass) much smaller than vr. The
wave equation can then be rewritten in a frame moving
with the density profile and this leads to an Eq. (1) where
the potential V(x) is static. The time Fourier transform
of this new equation yields the time-independent Schro-
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dinger equation [—6+V(x)]@=By, where the energy
8=ai /3vT, r0=2nf„where f, is the frequency of the
electronic mode. All the known results about localization
are hence applicable. In the special case where the ion-
acoustic spectrum consists of a single wave with wave-
length A., and amplitude p„ in the frame moving with the
wave, n(x) =[1+(ep,/rcT)cos(2zx/A. , )]n, where n is the
average density. The Schrodinger equation then reduces
to the Mathieu equation,

2—

X
+ (a —2q cos2X) y =0, (2)

& =[3 '/(f' —f')]'" (4)

is the electronic wavelength in the absence of density fluc-
tuation. It is well known [13) that, in the (a,q) parame-
ter plane, around each value of a =i (i integer), there is

a gap whose width increases with q. In these gaps, the
solutions to the Mathieu equation, instead of being purely
oscillatory, exhibit a spatially exponential behavior. Thus

by varying the ion-acoustic wave frequency f, =k, c,/2x
while keeping n, f„and y, constant, we can experimen-
tally explore the (a, q) parameter plane along a line that
crosses these various gaps and observe purely oscillatory
behavior alternating with spatially exponentially damped
behavior for the electronic wave. This damping has noth-

ing to do with any dissipative mechanism and, if strong
enough, adds to underlying Landau damping of the elec-
tron wave in the absence of density fluctuations, as is ob-
served in the experiment. A similar behavior has been
previously reported for ripples on an electron beam [14].
A Mathieu equation has also been previously introduced
to describe an experiment on electron plasma wave propa-
gation in the presence of ion fluctuations but these fluc-
tuations were purely temporal and the possibility of
wave-number resonance and spatial localization was re-
mote [15].

The experiment is performed in a double-plasma device
[16] with multipolar magnetic confinement [17]. The
vacuum chamber consists of a cylinder (52 cm long and
34 cm inner diameter) with twelve regularly spaced
parallel rows of permanent magnets mounted on the out-
side. It is divided into two unequal parts by a system of
three closely spaced parallel plane grids perpendicular to
the cylinder axis at 10 cm from one end of the machine.
The middle grid is biased positively and, by applying on it
a fluctuating potential, is used to launch the plane elec-
tron plasma wave. The two outer grids, 7.6 mm apart,
are grounded and provide an electromagnetic shielding

where X =ex/X, . This equation depends on two parame-
ters

2

a =(2X,/X, ), q
=—a fp ebs (3)

2 f2 f2 irT

where fp =[ne /earn]'i /2n is the average plasma fre-
quency and

for the wave. The base pressure is equal to 2x10
Torr; argon gas is used at 2x10 Torr pressure. The
plasma is created by a discharge from a set of emissive
filaments negatively biased at VD. The electron plasma
wave dispersion relation is very sensitive to the presence
of primary electrons emitted by the filaments; the pri-
mary electrons tend to create an undesirable beamlike
branch on the dispersion curve. In order to suppress this
effect, we used two filaments located in the smaller source
chamber with VD = —30 V. The plasma diffuses through
the grids into the target chamber where a Maxwell
demon [18] controls the electron temperature T. We ob-
tain a target plasma with an average plasma density n

uniform to 10% on a distance of 15 cm from the outer
grid and on a radius of 10 cm. In this plasma, we have
launched an electron wave of frequency f, and measured
its wavelength A,, by interferometry with a moving probe
and have thus carefully checked that the electron Lang-
muir wave satisfies a Bohm-Gross-like dispersion relation
given by Eq. (4). In the condition of the experiment,
fitting the experimental results with Eq. (4) yields

fp =141.5 MHz and T=6.6 eV, in agreement with the
average plasma density and temperature independently
measured on a Langmuir probe.

By adjusting the source plasma density and wall poten-
tial, an ion beam is produced with relative density of
order 1 and variable velocity. By applying a purely
sinusoidal signal of amplitude V,„, and frequency f, on a
plane plate at the end of the source plasma, we can thus
launch an ion-acoustic wave that propagates almost
without damping in the entire target plasma. The density
fluctuations are measured with an axially and azirnuthal-

ly movable spherical probe (2 mm diameter). Boxcar
averaging the probe signal allows one to get a snapshot n

of the plasma density as a function of the distance x from
the system of separating grids for a given phase of the
ion-acoustic wave. The measured plasma density fluctua-
tions for V,„,=1 V (peak to peak) with f, =195 and 67.5
kHz are shown in Figs. 1(a) and 1(b). Such measure-
ments give both the wavelength A,, and the mean relative
density fluctuation bn/n=ep, /xT. It is experimentally
easy to check that the ion-acoustic wave obeys the non-
dispersive relation A,, =vp/f„where vp =1.85 km/s.
Knowing that c, =3.98 km/s, we deduce that the ion
beam velocity u =1.4c„ in agreement with the plasma
potential difference hV&=7 V of the source and target
plasma measured with two fixed Langmuir probes. We
notice that, at the lower frequency [Fig. 1(b)], the signal
contains second and third harmonics [frequency (2-3)f„
wavelength A,,/(2-3)] of the ion-acoustic wave. These
harmonics are observed whenever f, ( 160 kHz and can-
not be easily suppressed for the driving voltage used in

the experiment.
We now set the receiving probe at a given distance

x~ =5 crn from the grid where an electron plasma wave is
launched with a frequency f, . The signal received on the
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FIG. 2. Square of the normalized electron plasma wave am-
plitude at x~ =5 cm from the emitter vs f„ for f, =150 MHz
and V,„,=1.4, 1.2, 1.0, 0.8, and 0.6 V (continuous curves 1-5,
respectively). Exp( —k;x~) from the Mathieu equation with

2q/a =0.88 (lower dashed curves) and 0.38 (upper dashed
curves), for the a =1 (right), 4 (middle), and 9 (left) gaps.
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FIG. 1. Boxcar-averaged density modulation vs distance
from the grid; V,„,=l V. (a) f, =195 kHz, (b) f, =67.5 kHz.

fixed probe is passed through a crystal detector, which

gives the square of the amplitude of the wave at this posi-
tion, and is then sent to the Y channel of an I-Y recor-
der. A plasma average density modulation is produced as
described before. The frequency f, of this modulation is

continuously varied and a dc voltage proportional to f, is

applied to the L channel of the recorder. For a given
value of f„ if we assume that, when V,„, is fixed, the den-

sity modulation and hence p, do not vary with f„moving
along the X axis corresponds to exploring the (a,q) plane
of Eq. (3) along a straight line 2q/a =const that crosses
the various Mathieu gaps. The result is displayed by the
continuous curves of Fig. 2 for f, =150 MHz and various
values of V,„„and of Fig. 3 for V,„,=0.4 V and various
values of f, . Each curve of Fig. 3 is contained in a box of
height 1 and labeled by its value of f, . For each curve on

these figures, the Langmuir wave energy is normalized to
its value in the absence of ion-acoustic density modula-
tion and we observe that the electronic wave amplitude
decreases for certain values of f„or correspondingly cer-
tain values of X, as given by the nondispersive ion-

acoustic dispersion relation.
To each experimental continuous curve, we can associ-

ate a measured electronic wavelength as given by Eq. (4);
it is easy to check that the observed wave amplitude de-
pletion always occurs around a value of the ratio 2), /A, ,
equal to an integer, as predicted by Eq. (2). More pre-
cisely, we have superposed on Fig. 2 and Fig. 3 dashed
curves which correspond to exp( —k;x~), where k; is the
spatial damping predicted by the Mathieu equation [13].
In Fig. 2, we recognize three groups of curves correspond-
ing from right to left to the a =1, a =4, and a =9 gaps.
The lower (upper) dashed curves correspond to hn/n

FIG. 3. Square of the normalized electron plasma wave am-

plitude at x~ =5 cm from the emitter vs f„ for V,„,=0.4 V and
various f, labeled in MHz on each curve contained in a box of
height l. Exp( —k;x~) from the Mathieu equation with 6n/n
=0.05 (dashed curve) for the a =1 gap.

2076

=0.11 (0.05) or 2q/a =0.88 (0.38) as given by Eq. (3) in

the conditions of the experiment. We notice that the
measured damping is bigger for the a =4 and a =9 gaps
than the predicted damping. Such a behavior can be ex-
plained by taking into account the presence of stronger
harmonics of the ion-acoustic density modulation at lower
frequency, as we have already noticed in Fig. 1. The po-
sition of a gap on the abscissa is only determined by the
wavelength ratio of the ion-acoustic density modulation
to the electronic wave. But, as the ion-acoustic wave is
nondispersive and the electronic wavelength is fixed for
Fig. 2, the same position for a gap on the abscissa can
correspond to different values of a; for example, an a 4
gap (k, =A., ) for the ion-acoustic wave is superposed onto
the a =1 gap for its second harmonic whose wavelength is
k, /2. In each box of height I for the normalized electron-
ic wave amplitude of Fig. 3, we have only superposed the
theoretical prediction exp( —k;x„) for the a =1 gap with
Bn/n =0.05, since the prediction for the a =4 and a =9
gaps shows the same behavior as in Fig. 2. We em-
phasize that no special fit has been made to obtain these
curves and that they result only from the independently
measured ion-acoustic and electron Langmuir wave
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dispersion relation. A strikingly good agreement is there-
fore obtained with the Mathieu theory.

We have reported experimental results that show the
influence of density modulation on the propagation of an
electron plasma wave. We have considered the case of a
purely sinusoidal modulation where the wave amplitude is
shown to obey a Mathieu-type equation. This is a crucial
step for the observation of Anderson localization in a
plasma. A further step would consist in replacing the
purely sinusoidal modulation by a random one, as pro-
duced by an arbitrary wave-form generator, for example.
The plasma seems like a promising medium for such
studies since it allows both the randomness and the am-
plitude of the density I]uctuations to be externally varied
in a continuous way.
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