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Two-Dimensional Fast Penetration of a Magnetic Field into a Homogeneous Plasma
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A fast penetration of a magnetic field into an initially homogeneous plasma is demonstrated. The
penetration is induced by a density gradient along the current lines that is formed by the magnetic pres-
sure in the two-dimensional How. The penetration occurs for any magnitude of the plasma collisionality.
If the collisionality is high enough the shock structure is determined by the resistivity, while in the low-

collisionality case it is determined by the electron inertia.

PACS numbers: 52.20.—j, 52.50.—b

A magnetic field usually penetrates into a plasma to
the (collisionless or collisional) skin depth. However, as
has been recently shown [1,2], when the magnetic field is

strong (the cyclotron frequency of the electron is larger
than its collision frequency), nonlinear elects allow a
fast, deeper penetration of the magnetic field into a plas-
ma, provided the plasma is inhomogeneous. In that case
the magnetic field penetrates into the plasma because the
electrons move on time-varying orbits, along which 8/n is

constant (8 is the magnetic field amplitude and n is the
plasma density). The velocity of penetration u, perpen-
dicular to the density gradient, is (cB/8tren) ~V inn ~,

where —e is the electron charge and c the light velocity
in vacuum. The shock structure in these studies [1,2] was
determined by collisions. In a later study, the fast col-
lisionless evolution of a magnetic field in the neighbor-
hood of the electrodes was shown to result from the
necessarily two-dimensional (2D) electron flow and the
electron inertia [3]. Most recently one of us has shown

that the shock structure in the fast penetration due to a

density gradient can be determined in the collisionless
case by the electron inertia, if the Aow is two dimensional
[4]. In the collisionless evolution no energy was dissipat-
ed in the bulk of the plasma, while in the collisional case
the dissipation was shown to be large [5].

In all these previous studies the plasma was assumed to
have a density gradient from the start. In this Letter we

demonstrate magnetic field penetration into an initially
homogeneous plasma, where the density gradient along
the current lines arises due to magnetic pressure in the
2D Aow. The velocity of penetration is larger than the
mass velocity, and therefore the compression of the plas-
ma is small. The penetration occurs for any magnitude of
the plasma collisionality. If the collisionality is high
enough the shock structure is determined by the resistivi-

ty, while in the low-collisionality case it is determined by
the electron inertia. The initial configuration consists of
an unmagnetized homogeneous plasma, adjacent to a vac-
uum region that is permeated by a magnetic field of only
one nonzero component. In such a configuration the
magnetic field cannot propagate into the plasma as a
whistler wave or as any other plasma wave. The penetra-
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The dimensionless quantities are the magnetic field b nor-
malized to 80, the density perturbation n normalized to
the unperturbed density no, the time normalized to the
ion cyclotron period to,; (=Mc/eBO, where M is th—e ion
mass), the coordinates normalized to the ion skin depth
c/to~; [—:(Mc /4nnoe ) '1 ], the'electron velocity v and
the ion velocity V normalized to V~ (=cto„/to~;), the
electric field E normalized to 8 V~0/c, and the resistivity

q normalized to Bti/noec. Also, c=—m/M is the electron-
to-ion mass ratio. The only nonzero component of the
magnetic field is in the direction of the ignorable coordi-
nate y'. I n writing the equations in the above form we as-

tion that we describe here follows an initial small nonuni-
form penetration that could result, for example, from a
faster penetration of the magnetic field along a cathode
that emits the electrons. Our mechanism could therefore
explain fast magnetic field penetration into plasmas that
carry current between electrodes, such as in the plasma
opening switch (POS) [6] or in the Z pinch. Such a
penetration may occur also in various other plasmas, as a
result of current channels of nonuniform widths.

The evolution of the plasma and of the magnetic field is
described by the continuity equation

r)n + zBV
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the momentum balance equation
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sumed that the z derivatives are larger than the x deriva-

tives, so that L,/L„v, /t. „, and V„/V, are all small. By
L and L, we denote the characteristic lengths in the two
directions. We further assumed that the velocity of
penetration u is much larger than V, so that the compres-
sion is small and n is much smaller than unity. On the
other hand, in order to neglect the partial time derivative
in the electron equation of motion, we assume that u is

much smaller than v„ implying that the flow is indeed

two dimensional. The various velocities therefore satisfy
the relations

V. « V, «1«u «v, «v„. (6)

The choice of this particular ordering corresponds to a

magnetic field penetration in the z direction, where the

velocity of penetration is x dependent. Such x depen-
dence can result, for example, from a faster penetration
of the magnetic field along the cathode. Looking for a
solution where all quantities depend on z —u(x)t, we find

from Eqs. (1) and (2) that

b2 bz
V, =, n=

2u 2u

Combining Eqs. (3)-(5), we obtain

2 db 2b3—e +— +up=0
dg 3u (12)

This is an equation for a nonlinear oscillator. We require
that db/d( =0 for b =0 and for b = —I, and therefore
Eq. (12) is integrated to

db + 9
dg 2

(b+b") =0.

The velocity is up =6 't . The solution of Eq. (12) is
periodic but the more physical solution is the shock solu-
tion since any nonzero dissipation will destroy the period-
ic solution. To show this we add the small collisional
term

is easy to show that

u«g
Let us now turn to the case of low collisionality. We

start by neglecting the resistive tern, the third term on the
RHS of Eq. (8). A self-similar solution is obtained for
b =b(() as well, but here (=[z —u(x)t]x't where
u(x) =upx ' . In this collisionless case Eq. (g) be-
comes
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(g) to Eq. (12). Equation (13) is then

We will consider two cases. In the first case the col-
lisionality is high enough so that the third term on the
right-hand side (RHS) of Eq. (8) is much larger than the
second term. In the second case, of low collisionality, the
second term on the RHS of Eq. (8) is much larger than
the third term.

Let us examine first the collisional case. We neglect
the electron inertia, the second term on the RHS of Eq.
(8). A self-similar solution is obtained for b=b(g),
where (=[z —u(x)t]x 't, and u(x) =upx 't . For a
penetration into an unmagnetized plasma Eq. (8) be-
comes

db b
ri = —upb-

6up'

It has the shock solution
- ]/3—exp( —3upg/rt)

1+exp( —3up&/rt)
(10)

where up=6 't'. The thickness of the shock is 8(rt) and
thus L, =8(rtx' ). Defining hl—=z/x, b'3=x', and 83
=t/x t, we find that t. „=8(rt '83 '), v, =8[rt
+82 (bi+b3)] u =8(82 '), V, =8(b'2), and V„=8[83
x (bi +153)]. In order that v, » u, we require that
b] + b3 (( rt. In that case inequalities (6) are satisfied. It

r i 2 r i t/3
db + 9

dg 2
(b+b )+ri =0.db

dg
(14)

Any nonzero rl makes the points at which db/d( =0 fixed

points. We therefore approximate the solution in the lim-
it of small collisionality as follows: If half a period of the
nonlinear oscillator is gp, then for 0 ~ g ~ gp, b(g) is the
solution of Eq. (12) while for g & 0, b(g) = —

1 and for

In order to have a shock solution the resistivity has to
be nonzero. It is easy to see, however, that if the resistivi-

ty is reduced the dissipation decreases as well. The dissi-
pation vanishes in the limit of zero resistivity. This is
difl'erent from the collisional case, in which the energy
dissipation is independent of the magnitude of the resis-
tivity. In this sense in the limit of zero resistivity the
shock is collisionless. Also, in the low-collisionality case
the shock structure is determined by the electron inertia
and not by the resistivity.

The thickness of the shock gp is 8(c't ) and thus
L, =8(s't 8z '). It is possible that there will be kinetic
instabilities associated with the narrow shock front.
These instabilities could be important if they can grow
significantly during the time that an electron spends in-

side the shock front, which is the electron-ion hybrid cy-
clotron period. In the low-collisionality case we find that
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FIG. 1. The collisional shock. Plotted are the magnetic field

contour lines, which correspond to values of b going from —I to
—0.1, for t =0.05 and t =0.41. g=0.03.

FIG. 2. The low-collisionality shock. Plotted are the mag-
netic field contour lines, which correspond to values of b going
from —

1 to —0.1, for t =0.08 and t =0 6S. e=0 01 and

g/e =0.16.

„v=8(B s '~') v, =8(b 8 c ' ') u=8(6p '),

V, =8(6z), V =8(Bi6p) .

(is)

In order that v, )) u, we require that zx '~ & c'~ . In
that case inequalities (6) are satisfied. We also find that

u ((6 (i6)

In dimensional units the shock velocity is V~(c/co~;x) '

while the shock thickness is (c/co~, )(c/rop, x) ', where

c/co&, is the electron skin depth.
In both collisional and low-collisionality cases the

penetration of the magnetic field is larger at smaller
values of x. This larger penetration could result from a
faster penetration of the magnetic field along a cathode
that emits the electrons. The mechanism could therefore
explain fast magnetic field penetration into plasmas that
carry current between electrodes, such as in the POS or
in the Z pinch.

Figures 1 and 2 show the shock propagation of the
magnetic field in the collisional case [Eq. (10)j and in the
low-collisionality case [Eq. (14)], respectively. Plotted
are the magnetic field contour lines (along which the
current Ilows) for two diff'erent times. In Fig. 1, r) =0.03.
In Fig. 2, e =0.01 and g/e =0.16. For a plasma of densi-

ty 10' cm and a magnetic field of 10 kG, q =0.03 cor-
responds to an electron temperature of l eV. Had a
smaller, more realistic, mass ratio been used in the calcu-
lation, the current channel in Fig. 2 should have been nar-
rower. The plasma compression is such that n =0.56 at
x=0.2. At larger values of x the compression is larger

and the approximation is less good.
In both cases, of high and low collisionality, the push-

ing of the plasma in the 2D Aow causes density variation
along the current lines. The density is not a function of g
only, but also of x, n=n(x, g) The .density increases
along the current lines, and as a result a fast penetration
of the magnetic field ensues.

In a more complicated geometry, in which the magnet-
ic field is of more than one nonzero component, there
could possibly be additional mechanisms for field penetra-
tion. What we have shown here is that even in a
geometry that could be approximated as a 2D geometry,
a situation typical of various plasmas, the magnetic field

can penetrate into the plasma.
As is usually the case with self-similar solutions, their

relation to a physical solution with given initial boundary
conditions has to be explored further. However, our self-
similar solutions do show the possibility of fast penetra-
tion.

In summary, we demonstrated the possibility of a fast
magnetic field penetration into an initially homogeneous
plasma. The pushing of the plasma in the 2D How gen-
erates a density gradient along the current lines. This in

turn induces a penetration of the magnetic field that is

faster than the plasma hydrodynamic motion. The
penetration occurs also in the low-collisionality case in

which there is no bulk energy dissipation. This mecha-
nism could explain fast magnetic field penetration into
the plasmas in the POS or in the Z pinch, and possibly
also in other plasmas as a result of current channels of
nonuniform widths.
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