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Standing Waves in Catalysis at Single-Crystal Surfaces
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Recent experiments have demonstrated the existence of standing waves for the catalytic reaction
CO+0 CO2 on a Pt(110) surface. We study this reaction by adding spatial coupling terms to a ki-
netic reaction scheme originally proposed by Eiswirth, Krischer, and Ertl. We argue that the standing
waves arise from a novel mechanism involving the parametric driving of finite-wave-vector waves via a
globally oscillating reaction rate. This interaction is possible because pf the (near) resonance of these
two modes.

PACS numbers: 82.20.Mj, 82.65.-i
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Here k, and k, are the rates (actually rates per unit par-
tial pressure) at which CO and 0 molecules hit the sur-

face, s„s are the sticking probabilities, and Pm, PQ,
are the respective partial pressures. The actual formation
of C02 (which immediately desorbs) occurs with rate k3.

Some of the most interesting examples of spatial pat-
terns in nonequilibrium systems occur in chemical reac-
tion dynamics [1]. The best known of these reactions is

that of Belusov-Zhabotinskii (BZ) [2] but there are a
wide variety of other cases [3,4]. Structures that are seen

typically include targets, rotating spirals (or their three-
dimensional analogs), and most recently Turing cells [5].

One experimental system that has recently received at-
tention is the catalysis of CO to CO2 on a single-crystal
substrate [6]. The advantages of this system are that the
reaction dynamics is relatively simple and the system is
inherently two dimensional. Ertl and co-workers have

pioneered the use of photoemission microscopy to provide
high-resolution images of the spatial structures that arise
in the oscillatory regime of this reaction. Aside from
spirals and targets, the system also supports standing
waves when the Pt(110) surface is used [6].

These standing waves are the subject of this investiga-
tion. We will propose an explanation of this behavior
that relies on the resonant driving of standing waves by a
global oscillation of the reaction. To model this nonlinear
interaction, we will expand the evolution equations about
a codimension two point where both waves and the global
oscillation become unstable; the resulting amplitude
equations predict modulated standing waves whose ex-
istence is then verified by direct simulation. At the end,
we will compare our results with the experimental
findings.

We start with the reaction scheme of Eiswirth, Krisch-
er, and Ertl (EKE) [7,8]. There are two "fast" reactions
corresponding to changes in the CO (c) and 0 (o) cover-

ages,

The form of the oxygen adsorption is due to the require-
ment that 02 dissociates upon binding and that 0 re-
quires a clean binding site.

As discussed in EKE, this system is bistable. To actu-
ally obtain the observed oscillation, one must couple this
reaction to a slow surface reconstruction. Specifically, at
low CO coverage the surface reconstructs to a 1 x 2 struc-
ture; this reconstruction couples to Eqs. (1) and (2) via

the assumption that the oxygen sticking probability de-
pends on the fraction of unreconstructed surface a via

sp =aspic+ (1 —a )sp2 . (3)

For the reconstruction dynamics, a/ks is taken to equal
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where c,o means the spatially averaged coverages. These
global couplings are presumably not independent, but the

1
—a for c~ c2.

The values of all of the parameters in the standing wave

regime (T-540'C) are given in Table I.
In this paper, we will focus on one-dimensional struc-

tures and ignore the presence of dislocations [6] which

make the actual pattern rather complex. To study spatial
patterns, we must modify the reaction equations to allow
for the coupling of different spatial locations. One cou-

pling is provided by CO diffusion; we will assume [3]
D —10 mm /sec (in the wave propagation direction,
since the diffusion is anisotropic). In addition, there is a

coupling due to pressure fluctuations which, on the time
scale on the reaction, equilibrate instantaneously. Obser-
vationally [9], the CO partial pressure is in phase with

the CO coverage and out of phase with the 0 coverage.
The variation in PQ, has not been measured but simple

arguments suggest that it behaves similarly. Thus we

postulate

Pco =Pco(1+ac —a'o),
(4)

Po, =Po, (1 —Po+P'c),
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TABLE I. Parameters for the EKE reaction; here k; =k; e ' for i =3,4,5.

CO

Rates

k|
Sc

e,

Sol

So&

Og

k3
k4
k5

CI

Flux
Sticking coefficient
Saturation coverage

Flux
Sticking coefficient on 1 x1
Sticking coefficient on 1x2
Saturation coverage

Reaction
CO desorption
Phase transition
Coefficients for

phase transition
Critical coverages

for phase transition

4.18x 10 s ' Torr
1

1

7.81x10 s 'Torr
0.6
0.4
0.8

k( =3x 106 s

kf 2x10's s

k$ -10' s-'
r3 —1/0.0135
ri 0 3r3

ci 02

E3 10 kcal/mol

E4 38 kcal/mol
E4 7 kcal/mol

r2 = —1.05r3
rp —0.026r3

C2 05

actual relationships among them are not yet clear. It will

turn out that these global coupling terms are helpful (but
not essential) in analyzing why this system can support
standing waves.

As discussed in EKE, the reaction dynamics without

coupling exhibits a Hopf bifurcation to an oscillatory
state. Upon addition of spatial coupling, one can ask
about the relative stability of a global oscillation versus a
wave with wave vector q. The answer, of course, depends
on the assumed coupling parameters. In the absence of
global coupling, diR'usion adds a term —D to the (1,1)
element of the stability matrix 8'/BtIri(tIr I), where we
have introduced the notation

y-(c,o,a), F F(yrtol) =0

and yrtol is the fixed point. This clearly suppresses the bi-
furcation. On the other hand, some of the global cou-
pling terms (a' and P') can enhance the instability of the
system to finite-q perturbations as compared to q=0
ones. Another way of saying this is to point out that
there exists the possibility of a codimension two bifurca-
tion where at some Po„Pco values, both q 0 and

q q simultaneously become unstable. Analyzing the
possible structure then requires a derivation of coupled
amplitude equations for the waves and the global oscilla-
tion.

Before proceeding, it is essential to understand what we
are proposing. In the "real" system with some set of a,
a', P, P', there may or may not be a codimension two bi-
furcation. Nevertheless, our system is always close to
such a point since the growth rates of the q* mode and
the global mode are partically identical. Because of this,
expanding about the pure global mode bifurcation point
is not useful for finite excursions into the unstable regime
and instead we must keep open the possibility that the
amplitude of the q* mode is equally important. There-
fore, we analyze the system by locating a nearby codi-
mension two point and thereby keep both the global am-

55

50

0
1—

~ 45

PJ
O

CL

40

q=0---- q=46

35
20

I

21
I

22
1

23
Pco (10 Torr)

I

24
I

25 26

FIG. 1. Contours of the Hopf bifurcation with a 0, p 0,
a' 0.1, and P' 0.1.

plitude and the wave amplitude as slowly varying dynam-
ical objects. This approach will be checked for consisten-

cy by determining (numerically) that (modulated) stand-

ing waves can exist even for parameter values without a
codimension two point.

To be precise, let us first focus on a' 0.1, P' 0.1,
a P 0, and q 46 mm '. A simple stability calcula-
tion shows that there is a codimension two point at Pco

2.48x10 Torr, P0, =4.7x10 Torr; the locus of
Hopf bifurcation points is plotted in Fig. 1. Furthermore,
if we compare the two Hopf frequencies,

0-0.409, a, -0.407

we find that these are sufficiently close that we must al-
low for the possibility of resonance between the two oscil-
lators. So, we proceed by applying standard bifurcation
analysis to the evolution equation near the point where
the q 0 and q 46 mm ' modes jointly bifurcate. We
assume
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where yo, yq are the eigenvectors of the bifurcating modes. Expanding to third order and using the fact that the right-
and left-going waves will have zero spatial average, we find the Landau equations,

Ao —e&oAo golAol Ao gi(IA~ I
+ IAL I »o g3ALARAo,

A~ -e&,A~ —t&~A~ —g, IA~ I'A~ —g I I Aol'A~ —g2IA. I'AR —g3AoAL,

AL =e&,AL t&—~AL g,—IAil'AL g—i IAol'Ai g2—1ARI AL g3ApAR.

(6)

Rely —d (Regi+cos2yReg3+sin2yImg3) (0,
where the phase y is determined by

d (Reg3 sin2 y
—Img3 cos2 y+ Imgp —Img I )

(7)

=Im(kp —X~) . (8)

Evaluating this expression along the direction Rei,q

=Recap, we find [10] that Im(kp —kv) is very small and

that the global mode is in fact unstable. This occurs be-
cause the phase y is adjusted to make Reg3e '"(0 and

hence the global oscillation pumps energy into the stand-

ing wave. The system instead exhibits a modulated wave

with Ao de'", Ag=AL, =be' "'+"; the respective am-

plitudes are obtained by solving the coupled (complex)
equations

TABLE II. Amplitude equation parameters in sec ' for

P~ 2.48 x 10 Torr, Po, 4.70x 10 Torr.

go
g&

g3

(1454.05,—7523.35)
(3005.38,—14957.24)
(3057.19,—14928.53)

gq

gi
g3
g2

(2723.57,—7116.96)
(2898.22,—14 955.70)
(1469.11,—7461.73)

(2013.51,—11 959.55)

Here, d, cp is the resonance detuning tov
—top, A,p, Xv are the

two unfolding parameters of the bifurcation, and e the
distance from the codimension two point. The g coeffi-
cients in the expansion are given in Table II for this
specific case; details of this calculation as well as the vari-
ation of these coefficients with the system parameters will

be given elsewhere [101. In what follows, we will drop
the resonance detuning as being negligibly small. as long
as we are a finite distance e from the bifurcation point.

The most important feature of the above equations is
the presence of the self-induced parametric driving term
with coefficient g3. These terms allow for the existence of
modulated waves where the global average coverages and
the coverages at wave vector q synchronously oscillate.
To investigate this possibility, we assume a global oscilla-
tion Ap Jade'"', Ag =AL, 0 (where r = et ) and study
its stability. Since the Hopf bifurcation to the global os-
cillation is supercritical (Rego) 0), we immediately ob-
tain d (Reit, p/Regp) ' and n = Im)1,p

—Imgpd . As-

suming a perturbation bAL bAg b(i )e'("'+"), we find

the stability condition

&v
—(g, +g2)b' d'(—gi+g3e "")=in,

) o god'—b'(2—g i+ g 3e
"")=i n

for the four unknowns d, b, y, and n, the frequency shift
of the modulated wave.

So, we have seen that for this specific set of global cou-

pling parameters, the catalysis system has a codimension
two bifurcation with a 1:1 resonance. This gives rise to
an instability of the globally oscillating mode to a stand-

ing wave (standing since the parametric coupling disal-
lows traveling wave states). We now imagine perturbing
the parameters, perhaps even to a set for which there is

no such bifurcation. We argue that the resonance behav-
ior encompassed by the amplitude equations given above
will still dominate the nonlinear dynamics of the system.
That is, the change ha, hp, Aa', hp' away from the codi-
mension two point will modify the unfolding parameters

Xo, A,q, and hco by a small amount but the system will still

be accurately described by Eqs. (6) above. Physically,
the nonlinear wave resonance is strong enough to over-

come small detuning and small differences in the relative

growth rates.
To verify this picture, we have performed direct nu-

merical simulations of the equations of motion with and

without global coupling terms. To do this we choose Pco
and Po, to lie inside the Hopf bifurcation curves for both

q =0 and q =q . For example, in one run we set

Pm =2.41 & 10 Torr, Po, 4.70 x 10 Torr, and

simulated the system without global couplings in a box
which sets q* =32.22 mm '. We start the system with a
random set of a, c, and o values close to the (unstable)
steady-state values. The CO concentration profile which

emerges at late times is plotted in Fig. 2. Notice that
there is a modulated wave having both q =0 and qWO

components. This nonlinear state of the system exists for
some sma11 but finite range of parameter space around
this point [101. In fact, even if we set a'=p'=0 and have

a,p) 0 (but not too large) we can still find stable modu-

lated wave (MW) states —here the global coupling is at-

tempting to completely synchronize the surface oscilla-
tions but is "overcome" by the parametric forcing.

We have already pointed out that these standing waves

exist in a fair1y narrow parameter range. In fact, we

were unable to locate any standing waves until we per-

formed the bifurcation analysis and learned which was

the relevant regime. This seems to be consistent with
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in stable (modulated) standing waves. The existence of
this nonlinear state has been analyzed by arguing that the
most important nonlinear interaction is the pumping of
standing wave modes by the almost resonant global oscil-
lation. Our endings agree qualitatively with experimen-
tal findings with regard to pattern wave vector and nar-
rowness of parameter range.
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FIG. 2. CO concentration profiles at 1-s intervals, no global
coupling; here Pgo 2.41 X10 Torr, Pp, 4.70x10 Torr,

q 32.22 mm '. Solid lines (from top to bottom) are followed
in time by dashed lines (from bottom to top).

similar findings in the experimental studies to date; one
finds the standing waves only in a rather definite part of
the PI-Po, plane [11].

One question as yet unresolved is the question of wave-

length selection. In our simulations, say without global
coupling, stable MW states exist for (approximately)
30~ q~50 mm '. Our approach has been to find a
nearby codimension two point for this range of q and
show that the nonlinear dynamics results in the MW
state. In principle, this approach might reveal why there
is a finite band of allowed states since the Landau equa-
tion parameters vary with q; this has not yet been at-
tempted. Experimentally, the system does seem to have a
fairly well selected wave vector, in the neighborhood of
q=100 mm . Given the large uncertainties in the pa-
rameters entering into the reaction dynamics, this should
be viewed as reasonably good agreement.

In summary, we have shown that adding spatial cou-
pling terms to the reaction kinetic scheme of EKE results
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