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We study a three-dimensional analog of the Wess-Zumino-Witten model, which describes the Gold-

stone bosons of three-dimensional quantum chromodynamics. The topologically nontrivial term of the

action can also be viewed as a nonlinear realization of Chem-Simons form. We obtain the current alge-
bra of this model by canonical methods. This is a three-dimensional generalization of the Kac-Moody
algebra.
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Three-dimensional field theories with topological terms

in the action have been studied recently in many physical

contexts, such as Chem-Simons theories [1], models for
antiferromagnets [2], and anyon statistics [3] (see [4] for
an overview). It is known that topological terms affect
the statistics of solitons [3,5], and can change the canoni-

cal commutation relation of observables [6-8]. In three
dimensions, this issue was studied in Refs. [9,10]. From
another direction, three-dimensional nonlinear models

have been shown to be renormalizable [11] in the 1/N ex-

pansion, although they are not so by power counting.
In this paper we study a three-dimensional nonlinear

sigma model on a coset space with a topological term. It
can be viewed as a three-dimensional analog of the
Wess-Zumino-Witten [5] model or as a nonlinear

Chem-Simons theory [I]. The model arises as the low-

energy limit of three-dimensional quantum chromo-

dynamics (QCD) [121. It is also related to certain mod-

els for antiferromagnetism that arise in attempts to ex-

plain high-T, superconductivity [2]. There are solitons in

this model whose statistics is determined by the topologi-
cal term. Furthermore, the theory should be renormaliz-

able in the 1/N expansion. The focus of the present paper
is the canonical formalism of this model. We discover by

this method a three-dimensional generalization of the

Kac-Moody algebra; it is a nontrivial Abelian extension

of the naive current algebra. Like the Kac-Moody alge-

bra, this can be further extended to a semidirect product
with the algebra of vector fields.

The Wess-Zumino-Witten (WZW) model [5] in an

even-dimensional space-time describes anomalous global
symmetries. The field variable g takes values in a com-
pact Lie group G [typically SU(N)]. It satisfies the clas-
sical equation of motion (for two dimensions):

el„(g '8"g)+'ke"'(g 'B„gg ' tJ g) =0.

If X =0, the equation is invariant under two discrete sym-
metries, Pi ..g g ', and P~.g(t, x) g(t, —x). The
WZW term breaks the symmetry down to the product
P~P2. Thus, the WZW term forces the fundamental field

of the theory to be a pseudoscalar. It is possible to for-
mulate [5,6, 13] this theory in a canonical formalism en-

tirely in terms of currents. The classical Poisson brackets

of the currents then define an infinite-dimensiona] Lie
algebra, the current algebra. In the absence of the WZW
term the current algebra is just the set of maps from
space to the Lie algebra of G, with the pointwise bracket
[6]. The current algebra is inodified by the WZW term.
In general, it provides an extension of the current algebra
by an Abelian algebra [7,8]. In particular, in two-
dimensional space-time, the current algebra is a central
extension of the loop algebra, the well-known affine Kac-
Moody algebra. The representation theory of this alge-
bra is well understood. The relation to the WZW model
has clarified the representation theory by relating it to
con formal field theory.

Much less is known about the representation theory of
current algebras in higher dimensions. Some progress
has been made in this direction [14], although a complete
understanding is still not available. This motivated us to
look for an analog of the WZW model in 2+ 1 dimen-
sions. This would be a way to study current algebras and
boson-fermion equivalence in a context simpler than in

3+1 dimensions, yet more general than in 1+I dimen-
sions.

However, there are no anomalies for continuous sym-
metries in odd-dimensional space-time. This is related to
the fact that H (G) vanishes for the classical Lie groups.
We can find an analog by looking for a nonlinear sigma
model on a target space with H nonzero. Furthermore,
the additional term must preserve parity if the field vari-
able is a pseudoscalar. The answer [12] is the target
space Gr„tv=U(N)/U(n) xU(N n), the Grassmanni--

an. We can parametrize Gr„ tv by an N xN matrix @:

Gr„ tv
= bP ~&t =@;@ = 1; tr@ =N —2n] .

The nonlinear model with this target space has the
field equation [@,tl„tl"@]=0. The cohomology group
H (Gr„N) =ZSZ (for N )4, n ) 2) is generated by co4

and co2Ato2, where to2k =trtIi(d@) ". Of the two genera-
tors, only co4 is odd under the transformation @
Thus we arrive at a generalization of the WZW model to
2+ l dimensions,

F bb, t1„tl"Nl+(k/8tt)e""PB„&9„@8p+=D.

The coupling constant F has dimension of inverse length
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in the classical theory. This equation of motion follows
from the multivalued action

S [cli] =
J trd4 e d4+ J tr@(d4) . (2)

M 64~ M

Here, M4 is a four-dimensional manifold whose boundary
is space-time M. As in the WZW model, in order that
exp(iS[4]) be independent of the continuation into the
fourth dimension, k must be an integer. This theory is in-

variant under parity (with 4 transforming as a pseudo-
scalar) if N=2n In. this case it is the low-energy limit
of three-dimensional QCD with an even number 2n of
flavors and k colors [12]. But we will study this theory
for general N and n.

We will now present a canonical formulation of this

theory, in terms of a set of Poisson brackets for the basic
observables, a set of first-class constraints, and a Hamil-
tonian. The Poisson brackets of the theory will be a gen-
eralization of the Kac-Moody algebra to 2+1 dimen-
sions. The canonical formalism is in terms of a decompo-
sition of space-time M =Z x R, Z being the two-

dimensional surface at fixed time. It is possible to derive
this formalism from an action principle, but the appropri-
ate one is not the multivalued action (2). Define a new

variable g valued in G—=U(N). One can always write
@=gag with b =diag{1, . . . , I, —1, . . . ,

—lj, and trb
=N —2n Th. en 4 is invariant under right multiplication
of g by elements that commute with t. ; i.e., under g[ gh,
h C H=U(n) xU(N —n). These transformations are
therefore like gauge transformations and we can write an
action for the theory in terms of g that respects this

gauge invariance:

S[g,A] = —2F,„ tr[(gtdg —3) e(gtdg —A)] — tr[b(gtdg)' —
3 (gtdgb)'].k (3)

The one-form A is an auxiliary gauge field valued in H, the Lie algebra of H. Its purpose is to remove the unwanted de-

grees of freedom. In this form of the action, the topologically nontrivial term is a nonlinear realization of the Chern-
Simons term. Unlike (2), action (3) is a local integral on space-time but it is only gauge invariant up to a multiple of
27K.

It is now possible to derive Poisson brackets and constraints from this action by a conventional procedure. The Pois-
son brackets so obtained at first will involve nonlinear (cubic) terms in 4. However, we can remove these by appropriate
redefinition of the generators. The variables @,J that satisfy simple commutation relations are, in this language,
4 =gt.'g and

J =g F,R+ e'J(g a,gg'a, g.+.g'a, gg'r), g .g'r-), g.g t),g b) g'.

{+(g),+(g')] =0, {J(~),e(g)[ =e([~,g]),

{J(~),J(~')] =J(P., ~'] )+ke(~(~, ) ') ) .

(4)

In (4), co is defined as ra(X, k') =(I/16m)e'~[8;1, 81&']+.
If the space Z is a torus, we can write these relations
more explicitly in a plane-wave basis:

Here, R is the projection of gtg on the orthogonal com-
plement of the gauge group and must satisfy the con-
straint [R, t. ]+ =0. (The symbol []+ will denote the an-
ticommutator throughout the paper. ) Our conventions
are that 4 is Hermitian and J anti-Hermitian.

We present only the results of the canonical analysis,
leaving the details for a longer publication. The basic ob-
servables of the theory are @ and J (which is essentially
the time component of the current) specified on Z. It is
natural to think of 4 as a scalar on Z and of J as a scalar
density (two-form). Let us also introduce the test func-
tions k:Z G scalar, and (:Z G scalar density. (G
denotes the Lie algebra of G.) We give the Poisson
brackets in terms of the dimensionless quantities
@(()=fztr(4&()d x and J(A.)=fztr(JA. )d x. They are

{@a @b] 0 {Ja @b] fabc@c

{Ja Jb] fabcJc dabc ij @ck

7r

(5)

In (5), m, n are two-dimensional vectors with integer
components. Also, d' ' is the usual symmetric cubic in-

variant of U(N) and f' ' the structure constants.
The algebra has to be supplemented by two constraints,

N =1 and [J,@]++ b' (8;4|)~4)=0.k

16m

One can verify that these are first-class constraints. This
is one major diAerence between our treatment of the
problem and the usual canonical formalism for similar
models [9]. With our method, second-class constraints
never arise and there is no need to introduce Dirac brack-
ets. Actually, our constraints (6) satisfy even stronger re-

lations than the conditions for being first class. It can be

easily checked from (4) that the Poisson brackets of @
and J with (6) vanish weakly. This means that every two

weakly equivalent observables 3 =8 of the theory wi11
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have weakly equivalent Poisson brackets with any third observable C: {A,C}= (B,C}. Both constraints and Poisson
brackets are also invariant under diffeomorphisms of Z.

The canonical formalism is completed by the Hamiltonian

J+ e'J8;@ali@ + g'J8;48i@ d x. (7)

Of course, the Hamiltonian does depend on the metric g;i on Z. The equations of motion that follow are

4 = (I/F, Jg ) [J,4],
J= — F—,Jgg'i[e, t1, a,e] + .'i[[a,J,a,e]+ —a, (4J@)a,e —|l,e a, (4J4)}.

4
' '

32zF ig
Equation (1) for 4 then follows (in flat space) from this

system of first-order equations and the constraints. This
completes our discussion of the canonical formalism.

Equations (4) [or (5)] define our current algebra Qk

(more exactly a current-field algebra). Notice that the
Poisson brackets yield linear relations in 4 and J, so (4)
defines a Lie algebra. If we set k =0, the Js alone form

a subalgebra at. The 4's generate an Abelian subalgebra
V of G-valued densities. The vector space V can be
identified with dual of the Lie algebra 8' by the natural

pairing (A, ,()=fztr(A. g)d x, so that it carries the coad-

joint representation of d. When k=0, our algebra Qo

reduces to the semidirect product of 8 with its coadjoint
representation.

When k~0, Sk is an Abelian extension of the map
algebra d' by its coadjoint representation. The Jacobi
identity of Qt, is equivalent to the statement that tv:cP

AcP V is a two-cocycle of the Lie algebra coholnology:

ticv(kl, k2, 13)

[Xl c(k0123)]+ to(kl, [X2,X3] ) +cyclic =0, (9)

which can be verified by direct computation. If co had

been exact there would have been a linear function

p:8 V such that

to(x, z') =8@(X,X')

—= —p(h, &'])+h, P(&')l —4, ', P(1l,)] . (10)

There is no such p, so we cannot reduce our algebra to a

semidirect product by a change of basis; Qk is a nontrivial

Abelian extension of at by V.
It is useful to note that the above extension can be

"exponentiated" to an extension of the group of maps

g: Z G by the vector space V (thought of as an Abelian

group). The multiplication law & is

(gl 4l ) (g2~42) (glg2~4l+g142gl +kt2(gl~g2))

where 0(gl, g2) =(I/16tt)e' 8;gl Bjg2g2 'gl '. The as-
sociativity of the group multiplication & requires that 0
be a group two-cocycle [15]:

—Q(gl, g2)+glQ(g2, g3)gl ' =0. (12)

This identity can be proved by direct computation. It is

possible to understand the constraints (6) as describing a
coadjoint orbit of the above group. The symplectic form
and hence the part of the action that is linear in time
derivatives can be understood from Kirillov's method of
orbits applied to this case. In fact, it turns out that the
Poisson bracket structure derived in this way coincides
with (4).

Finally, recall that the Kac-Moody algebra is invariant
under the action of the Virasoro algebra. In fact the gen-
erators of the Virasoro algebra can be written in terms of
the currents. The analog of the Virasoro algebra in our
case is the algebra of vector fields on Z. The Lie algebra

Ql, is invariant under diffeomorphisms, so that it can be
extended as a semidirect product with the algebra of
vector fields on Z. If u and v are such vector fields,

and L is the generator associated to them, satisfying
[L(u),L(v)} =L([u,v]), then

[L( ),J(~)}=J( 'a;) ), [L( ),~(g)}=+(a,( 'g)).

It would be interesting to develop a representation
theory for the algebra (5). Physically, that would corre-
spond to quantizing the above field theory. This might
look impossible at first because the theory is not renor-
malizable by power counting. However, as remarked in

[12], the theory is renormalizable in the I/N expansion,
provided one allows for massive vector fields to be dynam-
ically generated. We would first consider the limit N

(keeping n and k fixed) that is solvable by the
saddle-point method. This model has a nontrivial UV
fixed point. This is the analog of the UV fixed point of
the WZW model in 1+1 dimensions (although in that
case the UV fixed point is trivial). The WZW model also
has a nontrivial IR stable fixed point. It is possible that
there is an analogous (nontrivial) IR fixed point in our
theory as well.

Another interesting issue is that of the fermion-boson
correspondence. In two dimensions the WZW model, at
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the IR fixed point, corresponds to a free Fermi theory.
There has already been an attempt to prove such an

equivalence for the CP' model [16]. However, there is,
at present, no reliable approximation method to study this
issue, because the correspondence breaks down for CP
with N ) 1. Our model should have fermionic equiv-
alents for any N, n, so that the issue can be studied within

the I/X expansion. We will report on work in this direc-
tion in a later publication.
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