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CP and Other Gauge Symmetries in String Theory
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%e argue that CP is a gauge symmetry in string theory. As a consequence, CP cannot be explicitly

broken either perturbatively or nonperturbatively; there can be no nonperturbative CP-violating parame-

ters. String theory is thus an example of;» theory ~here all 0 angles arise due to spontaneous CP viola-

tion, and are in principle calculable,

PACS numbers: 11.17.+y, 11.15.Tk, 11.30.Er

There are two standard suggestions for solving the

strong CP problem. The most popular is the Peccei-
Quinn symmetry, and its associated axion [I]. Another

possibility, which has been pursued by several authors, is

to suppose that the underlying laws of nature are CP con-

serving, and CP is spontaneously broken [2]. In particu-
lar, one assumes that the "bare 0" is zero; the observable
0 is then "calculable, " i.e.„ it. is determined in terms of

the fundamental parameters of the theory. The main

difhculty with this program is to understand why the ob-
served 0 is in fact so small. Usually one tries to arrange
that. as a consequence of (other) symmetries, 0 vanishes

at tree level, and that loop corrections are suppressed by
powers of' small Yukawa couplings and the like.

Kitten noted some time ago that string theory
possesses axions, and that as a result it has the potential
to solve the strong CP problem [3]. Since then, there has

been much discussion as to whether this axion can remove

;].11 6 angles, whether there exist other axions, whether the

axions have suitable decay constants, and whether the

minimum of the axion potential is necessarily at 0=0.
But little or no attention has been paid to the question of

whether or not string theory might in fact be a theory of'

the second kind, i.e., one where the underlying, micro-

scopic theory preserves CP, and the bare 0 vanishes.

It h;~s been known for some time that in string pertur-
bation theory, CP is a good symmetry [4,S]. Strominger
and % itten observed that there are four-dimensional

string vacua in which classically CP is unbroken. They
pointed out that in generic vacua CP is broken and that
this can be thought of as arising spontaneously through

expectation values for CP-odd moduli. Clearly one can

also contemplate the possibility that CP is broken at

1ower energies by expectation values for other CP-odd

fields. These observations, however, are strictly perturba-
tive and do not establish whether or not the bare 61 van-

ishes. For example, there has been much speculation as
Io the possible existence of nonperturbative parameters in

string theory [6]. A priori, if such parameters exist (in

the case of critical strings), some could be CP violating; 0
angles might then arise as functions of these parameters.
Indeed, 0 angles are in some sense the paradigms of' non-

perturbative parameters. For example, in the case of the

E~ & Eq theory, compactified to four dimensions, it is natu-

ral to ask whether one could obtain two (or more) 0 an-

gles, only one of which could be removed by the model-

independent axion.
In this Letter, we argue that this cannot happen: If

string theory has nonperturbative parameters, they are

necessarily C.'P conserving. String theory, as a result, is a

perfect example of a theory in which the bare 8 vanishes

as a consequence of symmetry. The basis of this argu-

ment is a very simple observation: In string theory, four-

dimensional CP transformations are gauge transforma
tlons. As a result, provided simply that the theory exists,
no explicit breaking of the symmetry is possible, pertur-

batively or nonperturbatively. In the course of this dis-

cussion, we will encounter some other amusing facts. For
example, we will see that the Z2 symmetry of the Ep& E~

theory which interchanges the two E8's is itself a gauge
symmetry, and again is not susceptible to explicit break-

)figg.

To understand in what sense CP, in four-dimensional

compactifications of string theory, can be thought of as a

gauge symmetry, consider some features of the ten-

dimensional heterotic string theory. This is a theory
which violates P and conserves C, In particular, the
Gliozzi-Scherk-Olive (GSO) condition, which requires

that spinors be (say) left handed, violates parity. It is

perhaps helpful to understand this statement from a

world-sheet viewpoint. The two-dimensional field theory

which describes the ten-dimensional theory has a symme-

try under which one changes the signs of the nine space-

like coordinates x', and separately those of their right-

handed fermionic partners, y'. However, the separate
transformations do not commute with the Becchi-Rouet-
Stora-Tyutin (BRST) operator (the physical state condi-

tions). and thus cannot be symmetries in space-time.
Simultaneously changing the signs of both the x"s and

the y"s does respect the BRST symmetry, but this condi-

tion does not respect the GSO condition, which involves a

product of all the y's.
Charge conjugation, on the other hand, is a good sym-

metry. If we choose a Majorana basis for the Dirac ma-

trices, C is just the instruction to take the complex conju-

gate of (space-time) spinor fields. The reality condition

on these fields is obviously invariant under this operation,
as are the GSO and physical state conditions. In the

left-moving sector, the efTect of C is most easily under-

stood in the bosonic formulation. There it is just the in-
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struction to take X —X, I = 1, . . . , 16. This is obvi-

ously a symmetry of the world-sheet Lagrangian. It has
the eAect on the lattice of taking p —p . Since this is
a symmetry of both the O(32) and Esx Es lattices, it cor-
responds to a good symmetry in space-time.

It is very easy to see that C is in fact a gauge transfor-
mation, in either the Esx Es or O(32) theories. Consider,
for definiteness, the O(32) case; the argument is virtually
identical for Esx Es. Indeed the transformation C can be
viewed as a set of rotations in sixteen two-dimensional

subspaces through an angle x, a transformation that is

obviously contained in O(32). In the fermionic formula-

tion, if one works with sixteen complex X"s, L —X
corresponds to A,

' k'; this is just the rotation we have

described.
If the theory is compactified toroidally, C must also re-

verse the signs of both the left- and right-moving momen-

ta associated with the compact dimensions. For com-
pactification of an even number of dimensions, however,

this is obviously a proper Lorentz transformation.
What about P in lower dimensions? It is well known

that for toroidal compactifications in string theory (and
Kaluza-Klein theory), even when one starts with a
higher-dimensional theory which is P violating, the four-
dimensional theory is P conserving. We do not expect
that this symmetry arises "out of the air;" it must be one

of the symmetries of the original ten-dimensional the-

ory —indeed, it must be a (proper) Lorentz transforma-
tion in that theory. To see explicitly what it is, it is help-

ful to consider a toroidal compactification of the theory
(without background gauge or antisymmetric tensor
fields), and to group the six internal coordinates as three
complex ones, y

' =x +ix, etc. Then consider the
transformation which reverses the signs of x ', x, x, x,
x, and x (and i'', y, etc.). This is a combination of
ordinary parity in four dimensions, times complex conju-
gation of the y"s (and itt"s); it commutes with the GSO
condition. From a ten-dimensional perspective, it is a

proper Lorentz transformation. It is easy to verify that
on massless fermions it has precisely the correct effect.
The reader who wishes to check this point may find it

convenient to adopt the following basis for the ten-
dimensional Dirac matrices:

Write the four-dimensional y matrices in a Weyl basis,
and the O(6) y matrices in terms of creation and annihi-
lation operators (see, e.g. , Ref. [5]). Then the sixteen-
component, ten-dimensional spinors break up into pieces
u„,u,.;, where a, a denote left- and right-moving spinors,
and a, a are indices referring to the 4 and 4 representa-
tions of O(6)-SU(4). Grouping the u„'s and u, s into
four four-component spinors, 0 ', P takes left-handed fer-
mions to their right-handed counterparts. It is straight-

forward to show, in addition, that the corresponding ver-

tex operators are also suitably mapped into one another;
similarly, bosonic vertex operators have well-defined

transformation properties (e.g. , scalars transform as sca-
lars or pseudoscalars, and gauge bosons transform ap-

propriately).
Of course, since both C and P are gauge transforma-

tions, it follows that CP is as well. So far, however, we

have only illustrated these statements for toroidal
compactifications. Many other types of compactifications
violate P and C separately in four dimensions, while con-

serving CP. A good example is provided by conventional
Calabi-Yau compactifications, with the so-called "stan-
dard embedding of the gauge group" [5]. In these
theories, while the C and P symmetries which have been

defined above are spontaneously broken by the expecta-
tion values of the graviton and gauge fields, the combina-
tion is conserved, for suitable values of the moduli.

Indeed, at the level of the cr model which describes such

compactifications, P&&C is precisely the CP symmetry of
Ref. [4]. The same construction also works for sym-

metric orbifolds. Thus once again CP can (almost cer-
tainly) be thought of as a gauge symmetry. While the

complete space of four-dimensional string theories is not

known, and it is by no means clear that all such theories
can be obtained (for some limiting value of some moduli)

by solution of ten-dimensional field (or P-function) equa-

tions, it is quite natural to suppose that this result is com-

pletely general: CP is always a gauge symmetry in string

theory.
If string theory describes the real world, CP must be

spontaneously broken. This might occur at very high en-

ergies, through expectation values for some moduli fields.

In this case, the theory at low energies will be essentially
indistinguishable from theories with explicit CP violation.
Alternatively, CP might be broken by expectation values

of matter fields at lower energies. Before speculating on

how these phenomena might occur with sufficiently small
effective 8, it is instructive to understand the absence of
multiple 8 parameters in other, rather similar, ways.
Consider, for example, toroidal compactifications of the
heterotic string. We have already remarked that one

might worry that there are different 8's for each low-

energy gauge group, only one of which can be removed by
the model-independent axion. That this is not the case
follows from our discussion of CP, but it can be seen
another way. Consider first the EsxE8 theory. In this
case, it is tempting to say that one can add two 0's, one
for each E8. But in perturbation theory there is a Z2

which relates the two E8's. It is not hard to show that
this is a gauge symmetry [7], and thus the two 8's are
necessarily the same. For example, in Ref. [8] it was

shown that by turning on a background expectation value
for certain gauge fields, one can map the E8x E8 theory
continuously to the O(32) theory. But under this map-

ping, it is a straightforward matter to check that the Zq is
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mapped into a particular O(32) gauge transformation.
That is, one obtains the Z2 transformation by turning on

background fields such that one obtains the O(32) theory,
rotating the lattice by an O(32) transformation, and then

returning to the (Z2 transformed) Es x Es theory by again
turning on certain background fields.

More generally, one can ask whether different 0's

might appear as one moves around in the moduli space,
e.g. , at points of enhanced symmetry. Again, the answer
is no, as a consequence of gauge invariance. We are wor-

ried, here, about terms which do not change as one moves

around in the moduli space. In particular, then, we can
ask about the coefficient of FF for each of the 22 U(1)
gauge bosons which exist everywhere in the moduli space,
associated with left-moving fields [9]. There is a point in

the moduli space where all 22 of these symmetries are
unified in a single non-Abelian group. At this point,

gauge invariance requires that all 0's be equal.
In view of these observations, one can envisage several

scenarios for solving the strong CP problem in string
theory. Our comments here will be rather preliminary.
The fact that CP is spontaneously broken and OQco is in

principle calculable does not mean that it is small. (We
should stress that we are using "calculable" in the techni-
cal sense that it is not an independent parameter; we cer-
tainly do not know what dynamics, if any, determines the
string ground state, etc.) For example, it could be that in

string theory there are several strong gauge groups, and

that the effective 8's for each of these groups is large. In

this situation, one must make sure that there are enough
axions to cancel these 8's. In addition to the model-

independent axion, some further approximate Peccei-
Quinn symmetries must appear "by accident, " e.g. , as a
consequence of discrete symmetries [10,11]. This is the
conventional view we referred to in the first paragraph.
Alternatively, perhaps the various 8's are simply small
with string theory realizing some version of the ideas of
Nelson and Barr [2]; the low-energy structure of string
theory is sufficiently rich that this might occur. One
probably does not want CP broken at too low an energy;
otherwise one cannot hope to inflate away the associated
domain walls. Implementing variants of these schemes at
high energies may require additional discrete symmetries;
fortunately these are common in string theory. These
ideas will be explored in a subsequent publication, where
details of the analyses reported here will also be present-
ed.

The observation that CP is a gauge symmetry raises an
obvious question, about which we will only make some
timid speculations: What about T invariance, and CPT?
We cannot use precisely the same sort of reasoning to ar-
gue that T is a gauge symmetry as we did for parity. The
problem is that the would-be Lorentz transformation in

ten dimensions is not part of the proper Lorentz group.
However, from a stringy viewpoint, the similarities be-

tween the four-dimensional T and P are so striking that it
is natural to speculate that T, also, is a gauge transforma-
tion. Whether this would have profound consequences we

do not presently know. Unlike the case of field theory, it
is not easy to make a general statement about CPT in

string theory. In perturbation theory, CPT appears to
hold, basically because the space-time theory inherits
CPT from the world-sheet theory. But it is not yet clear
that CPT need hold nonperturbatively. Of course, if T as
well as CP is a gauge transformation, this would ensure
that CPT is as well.
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