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Yangian Symmetry of Integrable Quantum Chains with Long-Range Interactions
and a New Description of States in Conformal Field Theory

F. D. M. Haldane, ('l ( l Z. N. C. Ha, (il J. C. Talstra, ( l D. Bernard, ( l and V. Pasquier( l

~'~Department of Physics, Princeton University, Princeton, New Jersey 085)g
~ ~laboratoire de Physique Theorique, Ecole Normale Superieure, 2g rue Ihomond, 7M91 Paris CEDEX 05, Prance

( ~Service de Physique Theorique, Centre d'Etudes Nucleaires de Saclay, 91191 Gif sur Yv-ette, -Prance
(Received 6 July 1992)

The SU(n) quantum chains with inverse-square exchange exhibit a novel form of Yangian symme-

try compatible with periodic boundary conditions, allowing states to be countable. We characterize
the "supermultiplets" of the spectrum in terms of generalized "occupation numbers. " We embed
the model in the k=1 SU(n) Kac-Moody algebra and obtain a new classification of the states of
conformal field theory, adapted to particlelike elementary excitations obeying fractional statistics.

PACS numbers: 05.30.-d, 71.10.+x

In this Letter, we introduce a new description of the
states of non-Abelian conforrnal field theories that is in

some sense a generalization of the Fock-space occupation-
number description to describe excitations of an ideal gas
with fractional statistics [1]. This is applicable to, e.g. ,

the "spinon" excitations in a gapless Fermi fluid (Lut-
tinger liquid) with spin-charge separation, in one or pos-

sibly higher spatial dimension. The results also appear
to shed new light on the algebraic structures of integrable
models, placing the Bethe-ansatz-solvable models in the
context of a larger family of models, and identifying the
inverse-square interaction models as possibly the simplest

example of Yang-Baxter integrability, where the excita-
tions have purely statistical interactions.

These results have emerged from an extensive study

by three of us [2] of the remarkable underlying symmetry
algebra of the S =

z Heisenberg spin chains with inverse-

square interactions [3,4], and an embedding of this model

and its SU(n) generalizations in conformal field theory.
As that study reached completion, it became apparent
that the algebraic structures under investigation were a
novel presentation of the Yangian algebra [5] that has
been emphasized by another of us [6] as the key algebraic
structure in integrable models with non-Abelian symme-

try. The novel feature is that in contrast to the usual
presentation (e.g. , in Bethe-ansatz models [7]), this form

of the Yangian can coexist with periodic boundary con-

ditions that make states countable.
We will first describe the integrable spin-chain Hamil-

tonians .~t'z, z, &
H. =). I

'' l(P,, -1), (1)
z~i zii)

where P,z exchanges the states on sites i and j. The
primed sum omits equal values of the summation vari-

ables, and z,s—:z, —zs. The distinct complex numbers

z; parametrize the lattice sites. Translational invariance

is present if (z, ) = (~"); inversion symmetry (z, ~ 1/z, )
means we can choose ]u~ ( 1.

There are two families of models where H2 is Her-

mitian and translationally invariant. The trigonometric
models have w = exp(2zi/N), and N distinct sites on a
circle, with exchange between sites proportional to the
inverse-square of their chord distance. With two states
per site [SU(2) or S =

z Heisenberg chain this model
was independently introduced in [3] and [4, and has a
straightforward SU(n) generalization [1, 8] to n states
per site. The hyperbolic family has N = oo, and real
a in the ranges [

—1, 1]. Rescaling H2 in the singular
limit ~ ~ 0 gives the familiar nearest-neighbor-exchange
Bethe-ansatz (BA) model [9, 10]. The rescaled limits of
the hyperbolic and trigonometric models as w ~ 1 co-
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incide in the inverse-square-exchange (ISE) model; for
( ~ —1 the hyperbolic model scales to two decoupled
inverse-square models. The n = 2 positive-w hyperbolic
family (inverse-sinh exchange), was recently proposed
[11] as the natural integrable interpolation between the
BA and ISE S =

z Heisenberg chains.

I et X, be the nxn operator matrix with elements X,
that act as )P)(cr) on site i Th. en spins J; = Tr(t'X, )
are defined using the n —1 traceless Hermitian matrices
t' of the fundamental representation of the generators of
SU(n), normalized so Tr(t't ) = 2tI . These obey the
Lie algebra [t', t ] = f'k't', with antisymrnetric struc-
ture constants f ' = c„f,()„ f 'fd, h = tjd, and c„=-n.
For n = 2, f' ' = ie'~'; 2t' are Pauli matrices.

AVe will consider the algebra derived from supplement-
ing the usual global SU(n) generators Qo

——P,. J, ("level
0") with "level-1" generators

((z, j) = —,') ~„f (2)

Other hornomorphisms are Q„~ (—1)"Q„and Q„~
Q'„(A), where A is a "spectral parameter, " and Qi(A) =
Q i + Aq() . If (H() Eo j is the SU (n) Cartan basis, then
Yangian highest weight states satisfy E„)zIi) = 0 for
n ) 0, and are eigenstates of the (H„'j. The eigenvalues
determine certain polynomials; their roots characterize
the representation of the Yangian [12].

We verified the two consistency conditions, demon-
strating that recursive action of Qi((z, j) generates the

where u),j = (z, + zj)/z, j is the general solution of the
condition Apeak: uj)zBJ zk+ u)jku)jz + u)kzrokj —1 for i g
j g k. The only condition on the (z, j is that they be
distinct.

Drinfel'd [5] has defined the Yangian (a Hopf algebra)
by starting with level-0 and level-1 generators, recursively
defining level-n generators by f'~'[Qr, Qb, ]

= c„Q„',
and demanding consistency at level n, i.e. , that there is

only one independent generator Q'„at each level, regard-
less of the sequence of commutations by which it was ob-
tained. Provided the conditions at levels 2 and 3 are sat-
isfied, so are all the higher ones. If I'z~' ——[Q;, [Q~„q(')]],
1evel-2 consistency requires that F2 '+ F2~'~+ I'z' equals

1 fakr fblsf cmtf (qk ql qm j
where the symmetrized product {Ai,A2, . . . , Akj is the
average over all k! orderings of the operators. If I'3"'"

[[Qr, Qi], [Qi, Qo]], level-3 consistency similarly re-

quires that F3 '" + F3'" can be expressed in terms of

(Qi, Qo, Qo j. The fundamental property of the Yangian
is that it has the hornomorphism Q'„—z A(q'„) where the
comuttiptication A(q„) acts on two copies of the Hilbert
space: as usual, 6(q&) = Il. Qo+ Qo 8 11, but 6(qr)
nontrivially couples the two copies:

Yangian. The two key ingredients in the calculation are

(a) A, jk = 1 for i g j P ((;, and (b) that J, acts in

the fundamental representation, which eliminates prob-
lem terms where i, j, and k are not distinct. It is also
found that the requirements for Qi to commute with

H2 = p, & h,&P,~ are that H2 is a multiple of (1), and

(z, j = (( "j. The Yangian generator in the BA limit
~' ~ 0 has been described previously [7).

We note that Q; does not commute urith the Casimirs
of the group This. explains why the eigenfunctions of the
trigonometric models generally form highly reducible rep-
resentations of the group (the "supermultiplet" structure
[3]). 1zlote also that Q; is odd parity under inversion.

As the models are integrable, commuting Hamiltonian
constants of the motion H„(n ) 2) are in principle
obtained by the Taylor expansion of the logarithm of
T(A), the trace of an operator-valued monodromy ma-

trix L e(A) [13], with cornrnutation relations defined by
a rational solution of the Yang-Baxter equation R&2'
= (A —A )ha~6 ( + abash"(e. If L, ~'~ = Lae(A )6~

and L2
' = ti ~L~ (A2), then Ri2LiL2 = L2L1R12, so

[T(A), T(A')] = 0. Unfortunately, we have not yet ob-
tained L r (A; {z,j) away from the BA limit.

The H„are extensive, with parity (—1)",and [H, H„]
= [Q, H„) = 0. They must coincide with the known
results in the BA limit. Hs is given by [11]

zz~ = ):(
' ' "

1 (p,z —z)
ijk

Proceeding empirically, we obtained the next term

H~ = ) (
'

) (pzi —z)+H(,
~j'kl ZzjZjk Zkl Zli )

where the "obvious" guess is supplemented by

2

H,'=--,'H, —2) ''
)

(P,, —1).
zzj z

13

The commutation of H4 with H2, Hs, and Qi was
confirmed numerically [2] using matrix representations
of dimensions up to 100 numerically constructed on sym-

metry subspaces of the states of finite-length chains. The
numerical study also allowed us [2] to empirically charac-
terize the eigenvalue spectrum, and generalize the results
previously obtained for the SU(2) case [14].

The eigenfunctions of the trigonometric models are
grouped into multiplets characterized by sets of distinct
integer "rapidities" (m, j, in the range 0 & m, & N:

H„)(m, j, p) = ) e„(m,)){m,j,p).

In particular, e2(m) = m(m —N), es(m) = 2e2(m)e2(m),
and e4(m) = e2(m)[sN + e2(m)]. The crystal momen-

tum of the state is given by K = (2vri J/N) (mod 2~),
where J = Q, m, .
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A simple rule gives the complete set of eigenvalues: If
the group is SU(n), alt sequences (m, ) not containing
n or more consecutive integers occur T. he rapidity se-

quence can also be represented by a sequence of N + 1
integers (representing the range 0, 1, . . . , N) taking val-

ues 0 or 1; the 1's indicate the integers (rapidities) in the
set (m, ) (the first and last entries are 0). For example,
the singlet ground state of the SU(3) chain with N = 9 is

represented by 0110110110.This is the only state of this
chain which is singlet under the action of the Yangian
generators Q'„.

To obtain the multiplicity, the rapidity sequence is
transformed into a product of "motifs": First identify all

occurrences of groups of n —1 consecutive 1's, and replace
the 0's that enclose them by ")(" [e.g. , "0110"~ ")(11)("
for SU(3)). Then replace all remaining occurrences of
the sequence "101"by "1)(1".Finally, replace the 0's at
positions 0 and N by "(" and ")". Counting each ")"
and "(" as half a symbol, a state is now represented by
N symbols, organized into a sequence of motifs, delim-

ited by parentheses. The special motif (11.. . 1), with

a symbol count of n, will be called the SU(n) vacuum

motif. This represents a singlet combination of n spins
belonging to the fundamental representation. The SU(n)
ground state on nM sites is represented by a product of
M singlet vacuum motifs; the N = 9 SU(3) ground state
becomes (11)(11)(11).

A general rapidity sequence factors into a product of
both vacuum motifs and excited motifs. The empirically
observed principle is that each motif is associated with a
definite SU(n) representation content, and the total rep
resentation content of a state is the direct product of that

of the constituent motifs. An important class of motifs is
the sequence (), (1), (11), . . ., terminating with the vac-
uum motif. We will call these the primary motifs Such.
motifs with symbol count r contain a single irreducible

SU(n) representation with Young diagram [1"].
More general motifs (AOB) can be built from con-

stituents (A)(B) by a "fusion" process that is essen-

tially comultiplication. The direct product of represen-
tation contents of (A) and (B) is an upper bound to that
of (AOB): Typically, some representations in the direct
product are lost. For example, ()() is represented by the
Young diagram product [1] [1] = [2] [lz], but (0) con-

tains only the symmetric combination [2]. Mirror-image
motifs have the same SU(n) representation content.

A motif with symbol count r can be identified and
characterized by studying the states of a chain of length
r. The motifs (00. . . 0) with symbol count r (contain-
ing only 0's) can be identified with the "ferromagnetic"
(symmetric representation [r]) state of the chain. We call
these the symmetric motifs These are the onl.y excited
motifs in the simple SU(2) case, and were interpreted in

[1] as describing r "spinons" in the same "orbital. "
A systematic procedure that correctly determines the

representation content of any given motif has been ob-
tained [15] from a singular limit of the thermodynamic

2vri 27ri zi2 )

H2 ——P . . :J
(10)
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Bethe-ansatz (TBA) equations based on the "rapidity
string hypothesis, " thus providing the fusion rules

The solutions of the TBA equations are in one-to-one
correspondence with the true solutions of the BA equa-
tions, and give a correct description of the representation
content of the states of a finite integrable chain solved by
the BA, even though the complex rapidity patterns in the
exact solutions show a rather deformed string structure.
The cause of this deformation appears to be the violation
of Yangian symmetry by the boundary conditions. It is

not yet known how to obtain the rapidities for the finite
periodic versions of the hyperbolic models [11], but we

predict [15] that the deviations of the rapidity patterns
from the ideal strings will continuously decrease to zero
in the interpolation between the periodic BA and ISE
models.

In the ISE limit, the integer rapidities in a motif rep-
resent complex rapidity strings which (after rescaling ra-
pidities to keep their real parts finite) have collapsed to
a single point on the real axis, so the distinction between
one string, two strings, etc. , is lost. The TBA equations
determine the number of distinct ways that string lengths
can be assigned to the rapidities; the distinct solutions
count the irreducible SU(n) representations contained in
the motif.

The fusion rules seem to represent statistical interac-
tions between excitations [1]. The Pauli principle pro-
vides a prototype example of such effects, in that if a
"coproduct" of the spin states of two electrons is made,
the triplet spin combination is "missing" if they are in
the same orbital. This suggests that the "motifs" are
the fractional-statistics generalization of "independent
orbitals" in the conventional ideal Fermi or Bose gases.
The different possible motifs would then correspond to
the different possible occupation states of an orbital. The
coexistence in the trigonometric models of Yangian sym-
metry and periodic boundary conditions that make states
countable is crucial in exposing these effects.

We finally show how the remarkable structures of the
trigonometric lattice models are also present in confor-
mal field theory (CFT) [2]. The derivation is heuristic,
motivated by the observation that in the calculation of
the trigonometric model correlation functions, the lattice
sums over the z, can be replaced by what is effectively a
contour integral around the unit circle [3]. As given, it
turns out to work only for the SU(2) case, but we expect
a less-heuristic approach will generalize.

We introduce a field J'(z) with a mode expansion

J (z) =) J z-(-+'l, (9)

so Qo
——Jo, and construct
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The exclusion of terms with z, = z~ in the sum is imple-
mented by taking the principal part of the integral; the
standard radial normal ordering is indicated. The, J
are interpreted as generators of the Kac-iVoody algebra:
[J" . J„',: = f' 'J'+„+ 2kmb~+„ob . It is found that
the central extension must have k = j. , which corresponds
to the CFT describing the low-energy fixed point of the
corresponding spin chains [3, 4, 8].

In terms of the modes, .

Q; = f' ') sgn(m): J

(12)

These commute with the Virasoro level operator Io,
where (n + l)Lo = Q: J J:,which is the analog
of crystal momentum. Hz represents nonlocal (inverse-
square interaction) corrections to the CFT that break
Lorentz and conformal invariance.

The validity of this ansatz [for the k = 1 SU(2) case
only] was confirmed by numerical diagonalization at fixed

Lo & 10. Q; cornrnutes with H2, which has an essentially
identical eigenvalue spectrum to the lattice model, ex-

cept that the product of motifs is now semi-infinite. The
vacuum (Lo = 0) is represented by (l)(1)(l).. . and the
S =

2 primary state (Lo = 4) by ()(1)(l).. . . Excited
states are given by a finite rearrangement of a priinary-
state rapidity sequence: (m, ) ~ fm, ). The eigenvalue
of H2 is given by [Q,. (m, ) ]

—[Q,. (m, ) ], and the value
of Lo relative to the primary state is (Q, m, ) —(P, m, ).
The primary sector to which states belong is easi1y de-
termined from the asymptotic phase of the product Of

vacuum motifs.
For SU(n) with n ) 2, the ansatz (11) does not work,

but we expect that operators H2 and Q, with analo-
gous properties to those of the spin chains do exist, and
hope to report these elsewhere. We assume that their
eigenvalue spectra are related to the corresponding SU(n)
chain in the same way as we found in the SU(2) case.
Rote that H2 will break the conjugation invariance of the
CFT ',e.g. , the symmetry between 3 and 3 excitations for
SU(3);.

The finite subspace of Hz eigenstates ]4) of the CFT
that correspond to eigenstates of the trigonometric chain
of length X are those satisfying the selection rule that
the rapidity sequence has an unbroken sequence of vac-
uum motifs from position K upwards. A special class
of "l$' '"'-primary" states can be identified which are the
highest weight states of Yangian multiplets with motif
sequences like (00)(l)(l)(ll)(ll). . . (the primary mo-
tifs only occur in order of their symbol count, following
any symmetric motif). These (and their generalizations
v. hich also have similar motif patterns in reverse termi-
nating at position W) correspond to the Gutzwiller or
3astrow states explicitly constructed as wave functions
of the trigonometric chains [3, 4, 8].

These wave functions [1] are strikingly equivalent to
correlation functions ("conformal blocks" ) of the CFT,
leading to an obvious conjecture for a general relation
between Hz eigenstates ]4') of the field theory. and wave
functions of the spin chain: @((z,i o, )) x ((z, . a., )]4),
where

!'13)
I

2

Here primary fields @(z,a') (of the fundamental represen-
tation) act on the vacuum of the CFT.

%e also note that systematic techniques for the ex-
plicit calculation of the thermodynamic limit of correla-
tion functions of the Gutzwiller states have been success-
fully developed [16]. with simple but nontrivial results.
If these techniques can be reinterpreted in terms of Yan-
gian symmetry, then smoothly deformed from the ISE
model to the hyperbolic family, the problem of calculat-
ing integrable lattice model correlation functions would

be solved.
Ãe finally note that while we just studied the funda-

mental representation SU(n) chains and the correspond-
ing k =- 1 CFT, we expect that these results can be gener-
alized by the technique of local symmetrization (fusion)
of coproducts of k independent copies of the models. We
also expect there to be generalizations to analogs of the
XXZ chain where the SU(n) Yangian syminetry is de-
formed into that of the corresponding quantum group [7].
Indeed, it is conceivable that al/ BA lattice models have
integrable generalizations of the type discussed here.

Alodels of the trigonometric type combine a general-
izatiori of the exact additivity of quasiparticle energies
of the ideal Fermi and Bose gases, with the "general-
ized Pauli principle" introduced in [1] as an alternative
to the braiding description of fractional statistics. The
realization of quantum group algebra in a form compat-
ible with periodic boundary conditions is likely to be at
the heart of an "occupation-number" description of the
"ideal gas" limit of systems of particles with fractiorial
statistics. Applications to the quantum Hall effect may
be anticipated.

The k = 1 conformal field theories st, udied here are
obtained from free fermions by factoring out the charge
degrees of freedom; for spin-2 electrons, the charge de-

grees of freedom are also described by the SU(2) con-
formal field theory. The Yangian basis described here is

thus the natural one for describing semionic spinon and
Aolon states in spin-charge separated systems.
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