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Simulation of Biological Cell Sorting Using a Two-Dimensional Extended Potts Model
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We simulate the sorting of a mixture of two types of biological cells using a modified version of the
large-Q Potts model with differential adhesivity. We find long-distance cell movement leading to sorting
with a logarithmic increase in the length scale of homogeneous clusters. Sorted clusters then round. We
find two successive phases: a rapid boundary-driven creation of a low-cohesivity cell monolayer around
the aggregate, and a slower boundary-independent internal rearrangement.

PACS numbers: 87.10.+e, 64.60.Cn, 64.75.+g, 75.10.Hk

Embryonic cells of two different types, when dissociat-
ed, randomly mixed, and reaggregated, can spontaneously
sort to reestablish coherent homogeneous tissues [1].
Both complete and partial cell sorting (in which large
clusters of one cell type are trapped inside a continuous
structure of the other type) have been observed experi-
mentally in vitro in embryonic cells in two [2] as well as
in three dimensions [3,4]. Sorting is a key step in the re-
generation of a normal animal from aggregates of dissoci-
ated cells of adult hydra and involves neither cell division
nor differentiation but only spatial rearrangement of cell
positions [5,6].

Experiments have demonstrated that diff'erences in in-

tercellular adhesivity determine the final state of cell sort-
ing, the cell configuration approaching the global mini-

mum of overall surface energy [7,8]. Driving forces can
arise from differential surface energies, i.e., the dif-
ferences of surface energy for boundaries between like
cell types (homotypic), unlike cell types (heterotypic),
and cells and the external medium (edge).

Previous simulations of cell sorting on a lattice either
took cells to be pointlike or used nonrealistic rules to de-
scribe topological changes [9,10]. However, cells have a
nontrivial topology which must be simulated correctly if
we wish to understand cell sorting. In this respect,
boundary and vertex dynamic models are preferable [9].
The large-g Potts model has proved useful in simulations
of diffusive grain growth driven by surface energy, and
can correctly simulate experimentally observed topologi-
cal changes in cellular patterns in metals and soap froths.
It therefore seems a good starting point for a cell-sorting
model. However, cell sorting occurs through the move-
ment of cells rather than through cell growth. In addi-
tion, the Potts model simulates a pure material with a
single surface energy, while cell sorting requires the pres-
ence of at least two different cell types. We therefore
simulate cell sorting in two-dimensional aggregates using
an extension of the two-dimensional Potts model which
constrains cell size and allows for different surface ener-
gies between different cell types [11-15].

Model. —The large-Q Potts model describes a collec-
tion of N cells by defining N degenerate spins, tT(i,j)
=1,2, . . . , A, where i,j identifies a lattice site. A cell o

consists of all sites in the lattice with spin cr. Cells need
not be simply connected. Mismatched bonds between
diff'erent cells have energy 1 and bonds between like spins
have energy 0. The Hamiltonian is

+potts Z I ~e(i,j ),cr(i'j ') i
(i,j ), (i',j ') neighbors

where the neighbors may be of any desired range on ei-
ther a square or hexagonal lattice. At each step we select
a lattice site at random and change its spin from cr to
0' with Monte Carlo probability, for a temperature T
& 0, P(cr(i, j) o'(i,j ) ) [exp( —I)lf/kT): AP & 0;
1: I)& (0}, and for T=O, P(0(i,j) a'(i,j )) = [0:
hS & 0; 0.5: hit =0; 1: AP (Oj, where 6/f is the ener-

gy gain produced by the change. There is a critical tem-
perature T, above which each cell dissociates. Below T„
the spins coalesce into compact cells, though for finite
temperatures isolated mismatched spins are possible. At
T=O the cells grow by relaxation, as the pattern mini-
mizes its total surface area. The pattern's length scale in-

creases as cells disappear. The dynamics and statistics
agree well with experiments on surface-energy-driven
grain growth, e.g. , in soap froth [14,16].

Cell sorting presents a slightly diff'erent problem.
While the surface-energy-driving mechanism is the same
as for grain growth, biological cells have generally a fixed
range of sizes. Thus the pattern cannot lose energy by
coarsening, since cells cannot disappear (the same con-
strained evolution occurs in bubbles in magnetic films)
[17]. Instead, diff'erences in contact energies between
cells of different types (differential adhesion) cause cell
motion which reduces the pattern's energy. To include
these ideas we add an elastic-area constraint to our Ham-
iltonian, and introduce a second "quantum number, " z,
the cell type. In our simulations there are three cell
types, "light, " "dark, " and "medium, " r C [l,d, Mj. The
surface energy between two ce11s then depends on the
types of the cells. Each cell still has a unique spin,

tran

[1, . . . , Nj, and consists of all lattice sites with that
spin, but there may be many cells of each type, i.e., with
the same z. There is no simple way to introduce
differential surface energies without this cell type.

We therefore write the following modified Potts-model
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Hamiltonian:

J r(a(i,j )),r(o(i',j ')) I —6 t; ~1 t;,'1 +A. g [a(a) —8, & 1] 0(A, t &),
(ij ), (i',j') neighbors spin types a

(2)

where r(n) is the type associated with the cell a and

J(r, r') is the surface energy between spins of type r and
k is a Lagrange multiplier specifying the strength of

the area constraint, a(o) the area of a cell o, and A, the
target area for cells of type r. Because of the surface en-

ergy, each cell usually contains slightly fewer than 3, lat-
tice sites. Biological aggregates are usually surrounded

by a fluid medium (r =M), e.g. , culture solution, sub-

strate, or extracellular matrix, which we define as a single
cell with associated type, interaction energies, and uncon-
strained volume. We set the target area A~ of the medi-
um to be negative and include 0(x) = [0: x & 0; I: x & 0],
to suppress the area constraint.

We use Potts-model dynamics, with one Monte Carlo
time step (MCS) defined to be 16 times the number of
spins in the array; but we suppress the nucleation of
heterogeneous spins by requiring that a lattice site flip

only to a spin belonging to one of its neighbors. This con-
straint is biologically realistic for compact aggregates,
though we could relax it, e.g. , to allow the nucleation of
medium-filled vacancies [181. We have checked that for
our initial conditions, relaxing this constraint makes no
difl'erence at T=O, and only a negligible difl'erence for
T & 0, since heterogeneous spins are energetically forbid-
den in the first case and very short lived in the second
[18]. This dynamics allows cells to move slowly, by grad-
ually adjusting their boundary positions, rather than

jumping abruptly as in some earlier models [9,10].
Our goal is to determine whether a model of this type

exhibits biologically reasonable cell sorting. In coarsen-

ing, patterns are usually characterized by their side and

area distributions and their moments, as well as the ex-

ponent describing the average rate of area growth. In cell

sorting, the areas are approximately fixed so the area in-

formation is not useful. The second moment of the side

distribution, p2, is a useful measure of pattern equilibra-
tion as are the homotypic, heterotypic, and edge contact
lengths. We have not yet performed statistical studies of
percolation thresholds and cluster sizes.

In this Letter we refer to and represent the higher-
surface-energy (low-adhesivity) cells as light (r =l) and

the low-surface-energy (high-adhesivity cells) as dark
(r =d).

Anisotropy, temperature, and the area constraint. —A
difference between the model and the real system is the
lattice anisotropy. A unit length of boundary has a
different energy depending on its orientation, creating lo-

cal energy minima which tend to pin boundaries. Work-
ing with cells much larger than the lattice constant does
not solve this problem because topological changes always
occur on the length scale of one lattice constant. In coar-
sening, pinning only occurs for the nearest-neighbor
square lattice, though the scaling state distributions of

different lattice types can be different from the isotropic
limit [16]. We therefore employ a next-nearest-neighbor
square lattice which has a low anisotropy.

Ho~ever, because of the area constraint, cell sorting is
still sensitive to the lattice discretization. As a result, the
strength of the area constraint influences the evolution.
If X is very small or zero, the final state depends on
whether there is a free surface. If there is, all the cells
shrink (for positive surface energies), the light cells
shrinking and disappearing faster. If there is not, dark
cells replace light cells and coarsen as in the Potts model.
If X is too large compared to T and the differences be-
tween J's, the pattern freezes with all cells exactly at
their target area, since the energy cost of changing the
cell area to flip a single spin is large compared to any pos-
sible energy gain due to boundary length reduction. For
an intermediate range of A. , the initial cells rapidly grow
or shrink to reach their target areas. After this transient,
cells have stable areas but the pattern does not freeze,
since the finite temperature allows virtual two-spin pro-
cesses which conserve energy. We choose T=10 and this
effectively fixes k of order 1. In this regime, X does not
explicitly affect the relaxation of cells' shapes and posi-
tions. But the competition between the finite area con-
straint and surface energies causes light cells to have a
slightly smaller average area than dark cells. We employ
X =1 in the simulations discussed in this Letter.

For T &0, boundaries, especially for dark cells, can
crumple [17]. Cells can also interpenetrate by nucleating
spins within the bulk of their neighbors so they need not
be simply connected. While multiply connected cells do
not seem biologically realistic, they are the inevitable re-
sult of working on a lattice at T & 0. However, because
we simulate at low T, the unattached spins are few and
short lived and do not appear to cause significant qualita-
tive changes in the pattern's evolution. We can estimate
the magnitude of the problem by measuring the average
number of neighbors per cell. An ideal pattern of simply
connected cells with threefold vertices has (n) =6; a
disconnected pattern has (n) ) 6. We therefore perform
two T=O annealing steps to reduce (n) very close to 6,
before calculating the statistical properties of the pattern
[16,18]. This method works well in regular Potts-model
simulations and we have checked that all statistical prop-
erties converge to within a few percent of their limiting
values for the fully annealed pattern [16,18].

Surface energy If we reseal.e—all of' our energies
J(r, r') and k by a multiplicative constant b, this is

equivalent to reducing the temperature by a factor of A.

Since we consider only energy differences in our evolution
dynamics the model is also insensitive to additive rescal-
ing of the energies, provided that we also change the
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spin-spin interaction energy (here set to zero) between

spins within a single cell. The crucial parameters for the
pattern evolution are the relative differences between the
surface energies.

We assume that all energies are symmetric, i.e.,
J(d, l) =J(l,d), and that the energy of both cell types
with the medium is equal, J(I,M) =J(M, I) =J(d, M)
=J(M,d), leaving four parameters. We set all energies
greater than 0 with cell-medium energies largest. Other-

wise, the aggregate dissociates into isolated cells, a pro-
cess which can occur experimentally for small changes ei-
ther in the expression of cell adhesion molecules or in the
medium [19].

Spontaneous cell sorting can occur if the energy be-
tween the two types is greater than the average of the two
self-interactions (otherwise the cells mix to form an ex-
perimentally observed "checkerboard") [18,20] and less
than the self-energy of the light cells (or the pattern will

pin) [18]. The J's thus obey the inequalities

0& J(d, d) & [J(d,d)+ J(I,I)]/2 & J(d, i) & J(1,1) & J(I,M) =J(d, M) . (3)

We have checked that complete cell sorting occurs over
a wide range of parameters satisfying these constraints.
In this Letter we take J(d, d) =2, J(d, l) =11, J(l, l)
=14, and J(d, M) =J(I,M) =16.

Results We.—studied large-scale equilibration by ex-
amining the rounding of a square homotypic aggregate of
rectangular cells of various sizes (A 40). After 400
MCS the initial symmetries have totally disappeared and
the aggregate has become round. However, cell boun-
daries lie in energetically preferred directions (ktr/4) as a
result of the lattice anisotropy. The perimeter lengths
and p2 are stable by 400 MCS, showing that the pattern
has equilibrated.

We use this equilibrated rounded aggregate [Fig.
1(a)], with random assignment of cell types, as the initial
condition for the cell-sorting simulation. The initial sort-
ing into small clusters happens very rapidly over the first
few time steps, driven by the large energy difference
J(d, l) —J(d, d) =9 acting on isolated dark cells. These
clusters then merge on a longer time scale, due to their
increased mass [Figs. 1(b) and 1(c) and Fig. 2(a)]. The
trapping of light cells, called "partial cell sorting" [Fig.
1(d)] is observed biologically [4,7,9].

The light cells rapidly replace the dark where the ag-
gregate contacts the medium [Fig. 2(b)] due to the ener-

gy difference J(d, M) —J(l, l) =14 versus J(I,M)
—J(l, l) =2. After 300 MCS a monolayer of light cells
surrounds the dark cluster, the boundary ceases to be a
driving force in the evolution [Figs. 1(d)-1(f)], and the
internal rearrangement becomes boundary independent.

Bulk sorting can be seen in Fig. 2(a). The homotypic
boundary rapidly (in about 4 MCS) replaces the initially
dominant heterotypic boundary. Its length then increases
logarithmically. The total homotypic boundary of the
dark cells dominates, since the light-cell edge boundary
increases at the expense of the light-cell homotypic
boundary. The dark cells form a single large cluster sur-
rounded by light cells, which rounds very slowly [Figs.
1(e) and 1(f)]. This process is driven over a one-
dimensional surface by the small surface tension yd1
=J(d, l) —[J(d,d)+ J(l, l)]/2=3, while the cells that
need to move form a two-dimensional cluster. At 4000
MCS we observe the same crossover from logarithmic
cluster growth to slow rearrangement if we examine the
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FIG. 1. Cell sorting time series. (a) Initial configuration
with randomly assigned cell types, (b) I MCS, (c) 100 MCS,
(d) 1000 MCS, (e) 4000 MCS, (f) 10000 MCS. In this figure
and the following, displayed patterns and statistics are shown
after two annealing steps.

t
type-type correlation function. A similar crossover be-
tween surface- and bulk-driven processes occurs in the
disordering transient in soap froth [21].

Conclusion A.—n extended large-Q Potts model with
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leads to complete cell sorting. The latter is much slower
than the former and may explain why partial cell sorting
is observed biologically: The time scale for complete sort-
ing is long compared to other biological processes.

We would like to thank Professor Yasuji Sawada for
his critical reading of the manuscript and for his hospital-
ity at Tohoku University. This research has been sup-
ported by 3.S.P.S. and Monbusho.

0.0

(b)
0.06-

0.04—

QP
pp

p p

,aM

0.02 W ~ ~

0.00
10'

~ ~ ~ ~ I ~ I ~ I

10 10 10'
TIME (MCS)

~ ~ ~ ~ ~ I

10'

F1G. 2. Statistics on cell sorting. (a) Evolution of bulk

boundary length. Lines are logarithmic fits to data between 5

and 4000 MCS, with R &0.97. Triangles show heterotypic
boundary length; solid squares, dark-cell homotypic boundary
length; and open squares, light-cell homotypic boundary length.
(b) Evolution of edge boundary length. Solid squares show
dark-cell edge boundary length and open squares, light-cell
edge boundary length. All boundary lengths are expressed as
fractions of the total boundary length.

area constraints and diA'erentia] adhesivity can simulate
biological cell sorting. Though the behavior of the model
is robust with respect to detailed parameter choices, we

are continuing to study the effects of the finite simulation
temperature [[Sl. The model makes detailed predictions
about measurable properties of biological aggregates; un-

fortunately, it does not appear that such experimental
measurements exist. We have identified a crossover be-
tween a rapid boundary-driven stage which leads to a uni-

form light-cell-medium layer and partial bulk cell sort-
ing, and a slower boundary-independent stage which
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