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We analyze the single-particle and collective excitations near the metal to charge-transfer insulator

transition, using the slave-boson technique. We show that the Mott transition can be interpreted as a

softening of an auxiliary Bose excitation. In the insulating phase the energy of the boson at zero
momentum is related to the jurnp in the chemical potential at zero doping. The dispersion of the collec-
tive modes gives rise to the structure of the incoherent Hubbard bands. A similar picture holds for the

single-band Hubbard model.
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The one-particle Green's function in Mott and charge-
transfer insulators has been a subject of renewed interest
following the discovery of the superconducting transi-
tion-metal oxides. In broad terms, the main features of
the insulating compound single-particle spectra are un-

derstood in terms of the Hubbard picture supported by
small-cluster and impurity model calculations. While it

is clear that doping modifies the spectral functions there
is no universally accepted scenario. In the rigid Mott-
Hubbard picture, the doping electron or hole occupies
preexistent states at the top or the bottom of the lower
and upper Hubbard bands, respectively [1]. In the
marginal-Fermi-liquid scenario new states are generated
upon doping inside the charge-transfer gap [2]. The ex-
perimental situation is still unclear [3].

In this Letter we reexamine this problem using the
slave-boson method and the large-N expansion. Our con-
tribution to this problem is as follows: (1) We first ob-
serve that at small doping, near the insulating regime at
half filling, the slave bosons have two we11-defined disper-
sive modes, a mode analogous to the holon [4,5] in the
one-band system and an exciton mode which brings in the
finite-U (or charge-transfer energy) character of the
problem. In the insulating limit these collective modes
are not direct physical excitations of the system but ap-
pear as intermediate entities in several observables. They
are the hidden variables which provide a simple interpre-
tation for the incoherent features of the single-particle
and the optical spectra of the Mott insulator. (2) We
show that the Mott transition acquires a simple physical
picture as the softening of the exciton mode. This insight
is significant because there is no obvious order parameter
for the Mott transition, and therefore the standard
Landau-Ginzburg analysis is of no avail for identifying a
soft mode directly associated with this phase transition.
We show that, on the insulating side the energy of the
charge-transfer exciton mode is identical to the jurnp in

the chemical potential (Ap) for adding or removing a
particle. A finite hp corresponds to a gap in the single-
particle excitation spectrum and is a criterion for insulat-
ing behavior. On phenomenological grounds, the copper

oxides are characterized by having a charge-transfer gap
to hybridization ratio which is smaller than that of all

known insulating transition-metal oxides. In this sense

they are close to the metal to charge-transfer insulator
transition and the existence of a soft mode is relevant as a
potential source of deviations from canonical Fermi-
liquid behavior. (3) In both Mott and charge-transfer
systems the doping introduces states at the top and the
bottom of the lower and upper Hubbard bands for elec-
tron and hole doping, respectively. However, these states
are new quasiparticle resonance states which are not sim-

ply related to preexisting states in the insulator. The
Mott-Hubbard picture holds as a result of the identity
between the jump in the chemical potential and the q =0
limit of the exciton mode dispersion. The lower and

upper Hubbard bands and the optical absorption spectra
are simply related to the dispersion of the sound and the
exciton mode.

Most of our analysis is based on the solution of the
infinite-U extended Hubbard model, solved to next to
leading order in 1/N. We believe, however, that our con-
clusions are quite general and support this conjecture
with an analysis of the one-band finite-U Hubbard model
in the framework of the four-boson technique [6].

The starting point is the Lagrangian of the extended
three-band Hubbard model with SU(2) spin generalized
to SU(N) flavors for the Cu02 planes [7]:

X=gd;t (r1/8r+cg)d; + g p;t (8/'dr+cd)p;.
i, a, cr

ted+gb, 'a/ar b; gsgn(g)—(pe+; bt+ H.c.)
N ~. ~.~

+i g k; g d;~Q; + b;tb; N/2—(1)
l

where a=x,y and g= ~x, ~y, and X; is a Lagrange
multiplier enforcing the infinite-Ud constraint on the
copper site. The b; is a slave boson whose expectation
value measures the hybridization between the copper
3d„2 y2 orbitals (dt) and the oxygen 2p„and 2p~ orbit-
als (p„,p~ ), and the hole representation is used. This is

a minimal charge-transfer model which at several points
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of the discussion will be supplemented by

di adi api r/a' pi pa'
i, g, a, a'

+ Xf dixie'piqrr'piper ~

i, g,, a, a'
(2)

gtt =(E —16t y~) ' =
~yp

—g~ (3)

and vanishes at the metal to insulator transition as F ap-
proaches E, =4tzd(yl)'t from above according to dp
ix(E —E, )'t . The compressibility vanishes as dn/dp
exp —p,

We mention in passing that in the presence of the
copper-oxygen repulsion term H, , the minimum value of
tpd to sustain a metallic state is increased by V] and de-
creased by V2 which enhances the p-d hybridization by a

with V] and V2 representing the direct and exchange part
of the nearest-neighbor Coulomb repulsion whose impor-
tance for the high-T, oxides has been emphasized by Var-
ma, Schmitt-Rink, and Abrahams [8]. The phase dia-

gram of the model defined by (X+H,, ) has been studied
recently [91.

The metal to insulator transition at half filling was first
discussed by Kotliar, Lee, and Read [71 form the point of
view of the fermionic quasiparticles. In the large-N limit,
mean-field theory applies, lp=i(X;) and rp=(lb; ~)/JN,
and the model describes three renormalized quasiparticle
bands 4k i=(ck i, ck 2, ck 3) of the hybridized copper-
oxygen orbitals Wk~ t =(dk~, ipk, „,ipk~~) Wh. en Vi q =0,
the dispersions of the bonding and the antibonding bands
are Ei,2(k) =(s„+ed+ Rk)/2 with Rk =(s~ —sd)
+16rpt~qyj and y) =sin (k„/2)+sin (k~/2), whereas
that of the nonbonding band E3=s~. The renormalized
atomic level difference is h, —= ep

—ed =op —ed —Xp. The
parameters r p and kp are determined by the mean-
field equations which minimize the free energy, kp
=N gk (4tpgy)/Rk)(fik f2k) aild rp =

2 N

xgk(ukfik+Ukf2k), where N, is the number of unit

cells, ftk =f(Ei(k) —p) are the Fermi distribution func-

tions, and uk (Uk ) =(I + 5/Rk)/2. The mean-field equa-
tions can be solved analytically to conclude that a
second-order Brinkman-Rice transition takes place at a
critical value of the charge-transfer gap (s —sd ),
=4tzd(yp) 't where A$=A, =2tzd(yl) 't and yk =N,
&&2k y)fik =1/2+2/tr . This transition is similar to the
Brinkman-Rice transition if we identify the bare charge-
transfer gap F. =op —sd with the Hubbard U. Close
to the critical point rp vanishes according to r p

= [(y7) /yk] (E, E)/t~d at half —filling. Here yk

=N, 'gk ykfik =5/8+4/tr'. lt is important to em-

phasize that, on the insulating side (E & E,), the chemi-
cal potential jumps discontinuously as one goes from hole
to electron doping: Ap =Xp(6=0+) —) p(8=0 ) char-
acteristic of a Mott insulating state. This quantity is

given by

factor tr= 1 +i pV~/4tzy .For Vi & V, =1 7.5tzd+0. 73V2,
the Brinkman-Rice transition remains second order and

hp =
~Xp

—5/K~ vanishes at the transition where t~kp =5,.

For V] & V„ the Brinkman-Rice point becomes the origin
of a first-order transition line ending at another second-
order transition point at finite doping, around which the
model exhibits phase separation [9].

We now discuss this transition from the point of view

of the Bose degrees of freedom. This picture, which is
dual to the fermionic picture, illuminates a different as-
pect of the Mott phenomenon. To this end, we focus on
the half-full limit 6 0 —.The action for the Bose de-
grees of freedom is obtained by integrating out the p and
d fermion excitations from L. It has a very simple form
in Cartesian gauge. Denote (b, b ) —= (b, b )/vN; then

b =N Pq „„b (q, iso„) [ ito„—+) p f1~d—(q,ito„)]b(q,ito„),
where II&d is the usual interband polarization bubble,

IIpd (q, t to. ) =4tpg yk. +q/(i to„+a ),
yk+q Ns Z yk+qf 1k .2

k

We obtain the Bose field propagator

Zq
N(b (q, ito) b t (q, iio) ) = q

i CO& COq 1 CO& COq

with Zq = —(toq+5)/(toq —toqt'), aWP=s, e. The poles
in the propagator (4) define two collective modes co' and
co' corresponding to the holon and to the charge-transfer
exciton, respectively. The general dispersion of the
modes is given by

(4)

which simplifies in the large-charge-transfer-gap limit
into

(5)

and 0 (q) =1 —
yi, +q/yk = (2/n ) yq/yk ec q

' for small q.
Therefore, in the hole-doped case (6 0+), Iq & 0 and

coq )0, whereas this situation is reversed for electron
doping (6 0 ) where toq &0 and toq &0. Note that
for 6 & 0, Xp = s~

—sd —tzq/(sz —sd ) is large and

Gp 6d is small. The opposite is true when 6 (0. We
will see in the following that the one-particle spectra are
reconstructed by convolving the Bose spectral function
with the spectral function of the fermions. The fermionic
spectral function changes discontinuously as we go from
positive to negative doping. The reversal of roles (and the
discontinuous change) of the two modes as we go from
6 ~ 0 to 6» 0 is necessary to insure the fact that the in-
coherent part of the spectral weight changes continuous-

/y, and in particular has the same limiting value form
6 =0+ and 6' =0 . The modes disperse over a charac-
teristic energy scale t—:t~y/(s~ sd ). Expressions (3) and

(5) establish that the energy of the charge-transfer exci-

Xph p
toq = — n(q), toq =) p a+ n(q), —
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ton is identical to the jurnp in the chemical potential as
one goes from hole to electron doping: Ap =co,', -p. This
statement holds for Vi 2~0 where Ap =co&-p= Ap A/tel

and will be verified in the context of single-band Hubbard
model with finite U.

At moderate hole concentration, the system forms a
neutral Fermi liquid and the holon mode smoothly crosses
over to the usual zero sound mode in the long-wavelength
limit [51, which would show up in co~ had we kept the
next to leading order in rp contributions. In addition, in

the presence of a finite intra-atomic repulsion Vi 2, exci-
tonic eff'ects emerge and the energy of the charge-trans-
fer mode is reduced upon doping co~-p= [(kp 6/—tc)
—8rp~kpVi] t .

At finite doping, the modes co&' appear as poles (which
turn into resonances by including the damping effects) in

the density-density and stress-stress correlation functions,
identifying themselves with the collective modes of the
strongly correlated metal. However, near half filling, for
E )E„ these collective modes have a vanishing ( = rp )
spectral weight, as direct excitations in the response func-

tions.
At this point the modes appear as poles in the Bose

propagators which are auxiliary quantities. Physical
quantities are obtained as convolutions of these entities
with fermionic or other bosonic excitations. To relate
these modes to observables we compute the optical ab-
sorption in the insulating limit. The current operator is
given by (e =6 =1),

J;,=i (ttq/2) [di~b; (p; ~,t2 ~+p; -,t2 ~) —c.c.] .

The optical conductivity is determined by the imaginary
part of the current-current correlator

IIJ (q, r ) = —( T,J~t(q, t )J„(q,0))

Rea(q, co) = —Im[IIJ(q, co)/col,

which can be evaluated using our Bose field propagators.
For 8 0+, the only nonvanishing contribution comes
from the 1/N corrections, which involve a convolution of
boson propagators with an interband fermion bubble. We
found

R«(q, co) = ' g(I —yi2+q-o) b(co a —cop')—+(co——co)
2++s p N —6 —

Np

Clearly, in the insulating limit for 8 0+ the exciton
mode gives rise to the continuum in the optical spectrum
whereas the sound (holon) mode is completely screened
out at half filling. The opposite happens for 8 0 and

the roles of the holon and the exciton modes are inter-

changed, but one reconstructs the same incoherent spec-
trum. The onset of absorption at this order (1/N) begins
at hp+A=kp(b=0+) and this can be understood as an

optical transition between an atomic sharp level and a d
level which is broadened (i.e., our Feynman diagrain de-
scribes a transition between the incoherent part of the d
Green function and the bare p level). In the next order
O(1/N ), we find the optical gap equals Ap =lA, p

—
Al

[101. At finite positive (negative) doping, the screening
of the sound (exciton) is no longer complete, because all

modes (+'co~, ~ co&) start to be present in the boson

propagators. Moreover intraband processes have to be
taken into account. Eventually absorption develops inside
the insulating gap.

Even though co~ is not involved in the current-current
correlator in the zero-hole-doping limit (b'=0 ), it is

essential for the understanding of the single-particle spec-
tral function which appears in the photoemission and in-

verse photoemission spectrum. The spectral density on
the copper site is Aq(co) = —2/zN sgncolmGq(co), where
Gq(ico„) =FT[—(d;(r)b;t(r)b;(0)dt(0))] is the Green
function for the physical d fermions. In the limit b 0
the quasiparticle contribution of order I/N vanishes and
Aq(co) is given by the first 1/N correction considered by
Sa de Melo and Doniach [11] and Pattnaik and Newns
[12]. Following their analysis, we obtained

(7)

The momentum summation in (7) spreads out the b func-
tions giving rise to two broad continua synonymous with

the upper and lower Hubbard bands. Their positions are
determined by the arguments of the 8 functions which for
b' 0+, 4=4tzpy7/(c~ —eq) &&Xp, are given by eq —

co~

=ep+hn(q) and eq —co~=eq+A[1 —n(q)]. For
0, ~p = 4t~q yP/(et, eg) && &, w—e obtain eq —

cop
=ey —kpQ (q) and ep —

co&=e~
—Xp[1 —0 (q) ]. It is

clear now that both modes are essential to construct the
spectral function. The spectral density is schematically
depicted in Fig. 1 which shows that in the p-d charge-
transfer system quasiparticle states are introduced at the
top of the lower (Cu++) and at the bottom of the upper
(0 ) ionic bands for electron and hole doping, respec-
tively, resembling the Mott-Hubbard picture from the en-
ergetic point of view. The quasiparticle states which are
induced by doping, however, are strong coupling limits of
the Kondo resonances [13] describing states which have
no analog in the insulating state. The spectral weight as-
sociated with the quasiparticle states increases with dop-
ing. Therefore the eA'ect of doping is not a simple redis-
tribution of spectral weight among states which existed in

the insulator but causes a drastic modification of the na-
ture of low-energy excitations, contrary to the rigid
Mott-Hubbard picture. They form the narrow quasipar-
ticle band E~(k) of width -8rpt~y/6 around the renor-
malized level cy with a Luttinger Fermi surface and give
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the fields a;(q, rgi) =(Rq, A, dq, pq, kq, Aq) with p =(q, ru),

Rq eq+e —q, Aq eq e —q, pq 2 (pql +pql), and A,'
=

2 (Aql+Aql). To determine the energy of the exciton
mode in the insulating limit (U& U, ), we focus on the
limit q 0 of the inverse of the Bose propagator D
The evaluation of the determinant of D '(q=0, r0) is

straightforward and gives

detD '=2d [ —ro +[(e —d )/d ] [(U,/4)+)o] j.
0

5&0 6&0

FIG. l. A schematic picture of the single-particle spectral
density in the charge-transfer model given by Eq. (7) in the in-

sulating limit (solid lines) and upon hole doping (dashed line).
The bare and renormalized energy scales are indicated and
&p =roq 0=

~ rAa
—

zt~ r. The width of the continuum is deter-
mined by the dispersion for the modes at the zone boundary

g =(z,z).

rise to the dispersive features observed in angle-resolved
photoemission. Thus the closing of the charge-transfer
gap is equivalent to the softening of the exciton mode at
zero q. The picture outlined in this paper is not restricted
to charge-transfer systems or to the large-N expansion
which was used to derive the results.

To confirm this conjecture we analyze the one-band
Hubbard model with finite U following the functional in-

tegral approach introduced by Kotliar and Ruckenstein
[6] based on four auxiliary bosons representing the empty
site et, the double occupied site (doublon) d, and the
single occupied site p, cr = r, f, and three Lagrange mul-

tipliers k; and A; .
The mean-field analysis [6,14] in the paramagnetic

case at half filling shows a metal to insulator transition at
U=U, —=8rs(6=0)r where sis the unrenormalized kinetic
energy. On the insulating side (U& U, ) the mean-field
values of the Bose fields are given by the self-consistency
equations in the small doping limit [6,14,15]. Similar to
the charge-transfer model, the jump in the chemical
potential from hole to electron doping is given by hp
=Ao(8=0+) —Ao(8 0 ) =Up, where (—:[(U —U, )/
U] i/2

To study the Gaussian fluctuations and the collective
modes it is essential to notice the absence of a full radial
gauge, an observation due to Jolicoeur and Le Guillou
[15], i.e. , it is not possible to transform all the phases of
the four Bose fields to the Lagrange multipliers. At least
one boson, taken to be e; in the following, maintains its
own phase. In the following we shall partially follow the
notation of Ref. [14] extended to correctly include both
the e and et fields. At the Gaussian leve1, the charge
fluctuations decouple from the spin fluctuations and are
described by a 6X6 matrix D(q, co) of the propagators for
201?

The collective mode arises from the poles in the Bose field

propagators, which is determined by detD '(O, ais) =0,
so that by using the mean-field values eo, do, and A.o as
given in Ref. [14], one obtains rog =Ap =[U(U —U, )] '~

in agreement with the analysis of the charge-transfer
model.

To conclude, we have shown that the slave-boson tech-
nique provides a simple picture of the finite-U and finite-

charge-transfer-energy aspects of the strong correlation
problem. The physics of the Mott and the metal to
charge-transfer insulator transition as we11 as the distri-
bution of the single-particle spectral density can be un-

derstood in terms of collective bosonic excitations which

evolve into the physical collective modes in a strongly
correlated metal upon doping.

The group in Rome acknowledges the support of the
European Economic Community under Contract No.
SC 1 *0222-C(EDB). The work at Rutgers was support-
ed by the NSF under Grants No. DMR-89-15895 and

No. DMR-89-96285.

[]]H. Eskes, M. Meinders, and G. A. Sawatzky, Phys. Rev.
Lett. 67, 1035 (1991).

[2] A. Ruckenstein and C. M. Varma, Physica (Amsterdam)
185-189C, 134 (1991).

[3] For a recent review see Physica (Amsterdam) 185-189C,
(1991).

[4] P. W. Anderson, Science 235, 1196 (1987).
[5] Z. Wang, Y. Bang, and G. Kotliar, Phys. Rev. Lett. 67,

2733 (1991).
[6] G. Kotliar and A. Ruckenstein, Phys. Rev. Lett. 57, 1362

(1986).
[7] G. Kotliar, P. A. Lee, and N. Read, Physica (Amster-

dam) 153-155C, 538 (1988).
[8] C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid

State Commun. 62, 681 (1987).
[9] M. Grilli, R. Raimondi, C. Castellani, C. Di Castro, and

G. Kotliar, Phys. Rev. Lett. 67, 259 (1991).
[10] At order 1/N transitions are allowed involving the

(1/N)-dressed fermion propagators, which have a spectral

weight gap hp; see below in the text.
[11]C. A. R. Sa de Melo and S. Doniach, Phys. Rev. B 41,

6633 (1990).
[12] P. C. Pattnaik and D. M. Newns, Phys. Rev. B 41, 880

(1990),
[13] M. Grilli, G. Kotliar, and A. Millis, Phys. Rev. B 42, 329

(1990).
[14] M. Lavagna, Phys. Rev. B 41, 142 (1990).
t15) Th. Jolicoeur and J. C. Le Guillou, Phys. Rev. B 44, 2404

(1991).


