VOLUME 69, NUMBER 13

PHYSICAL REVIEW LETTERS

28 SEPTEMBER 1992

Pairing and Spin Gap in the Normal State of Short Coherence Length Superconductors

Mohit Randeria, "’ Nandini Trivedi, !’ Adriana Moreo, ® and Richard T. Scalettar ®

M Materials Science Division 223, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
@ pepartment of Physics and Center for Materials Research and Technology, Florida State University, Tallahassee, Florida 32306
® pepartment of Physics, University of California, Davis, California 95616
(Received 27 May 1992)

We study the normal state of the 2D attractive Hubbard model using quantum Monte Carlo simula-
tions. We show that singlet pairing correlations develop above T, and the normal state of a short coher-
ence length superconductor deviates from a canonical Fermi liquid. In the intermediate U regime, the
spin susceptibility y; is strongly temperature dependent, and the low-frequency spectral weight, as mea-
sured by the NMR relaxation rate 1/7,7T, is shown to track xs. This provides a simple, qualitative ex-
planation for the spin-gap behavior observed in several high-T. systems.
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The problem of the crossover [1] from a BCS super-
conductor to a condensate of pre-formed bosons has at-
tracted renewed attention [2]. Given their very short
coherence lengths, the high-7, materials are likely to be
in an intermediate regime between these two limits.
Rather little is known [3] about how the normal (nonsu-
perconducting) state of a system of fermions with attrac-
tive interactions evolves from a Fermi liquidlike regime to
a Bose regime as a function of increasing attraction. In-
dependent of the microscopic mechanism, the question of
how the resulting attractive interaction affects the
normal-state properties is of considerable interest.

We address this question using quantum Monte Carlo
simulations [4,5] for the attractive (“negative U”") Hub-
bard model in 2D. We show that for intermediate cou-
pling strengths the normal state clearly deviates from a
canonical Fermi liquid. Our main results are the follow-
ing: (1) The uniform, static spin susceptibility y; is
strongly temperature dependent, with dy,/dT >0, for
T.<T <Tp,, where T, is the superconducting transition
temperature, and 7, a “pairing” scale (defined later)
below which strong singlet pairing correlations develop.
(2) This is accompanied by a “spin gap,” i.e., a reduction
in the low-frequency spectral weight, leading to an NMR
relaxation rate 1/7,T which tracks x,(T). We em-
phasize that these results, which are perhaps easiest to ra-
tionalize in the nondegenerate, pre-formed boson limit at
large U, persist well into the intermediate-U regime
where one has a degenerate Fermi system.

These results are strikingly similar to the anomalous
behavior of the NMR Knight shifts and relaxation rates
observed [6,7] above T. in many, but not all, high-T, su-
perconductors. Walstedt and co-workers [6] have partic-
ularly stressed the relationship 1/TT ~x,(T), which is
very different from that expected in a Fermi liquid,
namely, 1/7,T~y2 with y, temperature independent.
Theories of short-range antiferromagnetic fluctuations
[8], which have been very successful in explaining many
aspects of the normal state NMR, are, however, unable
to account for these anomalies; see Ref. [9] for a clear
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discussion. Our work, which provides a natural explana-
tion for these anomalies, is in a sense complementary to
these earlier theories. We discuss below in more detail
the implications of our results for experiments on the re-
duced oxygen YBa;Cu3O0¢+, (YBCO) systems.

The attractive Hubbard Hamiltonian is given by
H=—1Y (c}eotHe) —UXnyn+pXni, (1)

(i jo i io

where (i,j) denotes a pair of nearest-neighbor sites on a
square lattice, o is a spin label, and n,-a=c,f,c,~o. From
here on t=1, and all energies are measured in units of ¢.
The chemical potential g is tuned to fix [10] the average
density (n). The superconducting (Kosterlitz-Thouless)
transition [S] is expected to have a maximum T, (as a
function of U and {n)) around 0.1. All of our numerical
results will be in the normal state with 7> 0.1 on sys-
tems of size up to 8x8. It is perhaps worth noting that
the attractive Hubbard model does not suffer from the
“sign problem” which often plagues fermion Monte Carlo
calculations.

We begin by determining the regime in parameter
space where one has a degenerate Fermi system, since it
is important to establish that the anomalous normal-state
properties discussed later persist in this regime. The U
and T dependence of the chemical potential u required to
maintain a fixed density, {n) =0.5, is shown in Fig. 1. We
find du/dT <0, as one usually expects, for all T and U, in
contrast to the result of summing ladder diagrams [11] in
2D. At low T we find good agreement with a 7=0
mean-field treatment [12] which self-consistently solves
for the superconducting gap function and the renormal-
ization of u. To determine the degenerate regime (see
Fig. 1) we use the following criterion. If the chemical po-
tential, measured from the bottom of the band (at —41),
taking into account the Hartree shift, is larger than the
temperature, namely,

u(T,U)+4+n)U/2> T, (2)

then the system is degenerate (strictly speaking, the in-
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FIG. 1. Chemical potential as a function of temperature re-
quired to maintain a fixed density, {(n)=0.5. The Monte Carlo
data at U =4 and 8 are on 8 X8 lattices, and the U =12 data are
from a 4x4 system. The points (stars) at T=0 are the mean-
field results from Ref. [12). The degenerate region is above the
dashed curve [see Eq. (2)].

equality should be replaced by >). We note that at
sufficiently low temperatures all [13] of our Monte Carlo
data are in the degenerate regime. (We estimate [14]
that for (n)=0.5 we require U > 16 to be nondegenerate
at very low T.)

To see the formation of pairs as U increases, we look at
the on-site correlation function {n;1n;}). This increases
monotonically with U at any fixed T, and at low T goes
from the totally uncorrelated value of (n)%/4 at U=0 to
nearly 0.96 of (n)/2, the value characteristic of on-site
pairing, at U=12. From this point of view the U =12
case, even though degenerate at low T, appears to be
close to the infinite-U limit.

We next turn to the effect of pairing in the normal
state on various observable quantities; we shall focus
mainly on magnetic correlations in this paper. We first
look at the uniform, static spin susceptibility y;=x(q
— 0,w=0) as a function of U and T, shown in Fig. 2.
For U =0, xo has the expected Pauli behavior for 7T < 1
crossing over to a Curie-like form at higher temperatures.
(The small bump at 7=0.5 is due to the logarithmic
singularity in the density of states at the band center.)
With increasing U the overall magnitude of y; decreases,
which may be understood (at high 7) within RPA with
2RPA=7(1+Ux").

For U =4, y, resembles the RPA result at high temper-
atures, flattens out at intermediate 7, and then for
T <0.5 shows a remarkable temperature dependence.
Note that 7.=0.05 for this case [5]. This low-tem-
perature drop in yx; is a result of the tendency towards
pair formation in the normal state (and is, of course,
completely absent in the RPA). For U=8 and 12, we
find that y; is an increasing function of T for all T <4.
For large U one obtains tightly bound singlet pairs which
contribute to x; only when they are ionized.

The temperature at which the Monte Carlo data devi-
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FIG. 2. The uniform, static spin susceptibility as a function
of temperature, for various U values. The RPA form is fitted to
the U =4 MC data (not shown) in the high-temperature regime
2< T <4 by using a “renormalized” value U=3.25. System
sizes are the same as in Fig. 1. Error bars not explicitly shown
are of the size of the symbols.

ate from the RPA can be used to define a pairing scale 7,
which is clearly larger (for the values of U studied) than
the transition temperature 7. at which coherence is es-
tablished. The anomalous behavior in the normal state
discussed here is in the regime 7. <T <T,. For small
U, T, is expected to be the same as the mean-field transi-
tion temperature 72, and one can describe the regime
T.<T<TQ in terms of superconducting fluctuations
[15]. For large U the two scales are widely separated
[16] with T2~¢2/U while T,~U, the pair binding ener-
gy. The anomalous temperature dependences in the nor-
mal state then clearly arise from the formation of singlet
pairs without any coherence, and not from superconduct-
ing fluctuations.

A static susceptibility with dy;/dT > 0, though sugges-
tive, is by itself not [17] sufficient to establish a spin gap
[9,18], namely, a reduction in the low-frequency spectral
weight y"(q,), which is probed by the NMR relaxation
rate 1/T,. In general, it is very difficult to obtain
2"(q,@) from Monte Carlo calculations, since it requires
analytic continuation from Matsubara to real frequencies.
However, for our present purpose one can use the follow-
ing strategy.

We can write [8] y"(q,0) =x(q,0 =0)wf(q,») where
f is even in ® and, using Kramers-Kronig relation,
Jf(q,0)dw/r=1 for each q. Defining 1/T,=f(q,0),
1/T can be written as

L im D x'(q,0) = x(q,0) . 3)

T]T 0o—0 q w q rq

The imaginary time correlation function S(q,7) =(sq(7)
X5 —q(0)), where sq is the Fourier transform of sf=n;;
- n;y, is related to the spectral weight via

I e exp(—w7) "
S(q,7) f_wdw 1 —exp(—w/T)x (qw). (4)
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For t =1/2T, the thermal factor in (4) is 1/sinh(w/2T)
and the integral gets cut off on the scale of 7. Using
2"'(q,0) =x(q,0)0/Ty for @ <2T, an assumption which
is reasonable for T less than the scale for spin fluctua-
tions, we find

Zs(q,r=1/2T)=n2T22M. (5)
q e I
We are thus able to extract 1/7,T from an imaginary-
time spin correlation function measured directly in the
Monte Carlo simulations.

The relaxation rate 1/7T,T, obtained from (3) and (5),
plotted in Fig. 3(a), is found to decrease as T is lowered.
In Fig. 3(b) we show that 1/T;T indeed tracks the static
susceptibility yx,, thus establishing spin-gap behavior in
the normal state. It is worth noting that, for the two
values of U studied, the data for 1/TT vs x, appear to lie
on the same curve. Further, we emphasize that the spin-
gap arises from a temperature-dependent I';. To see this
we have checked that x(q,0), for typical values of ¢=0, is
weakly T dependent, as one might expect [9] from the
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FIG. 3. (a) The relaxation rate 1/7T (in arbitrary units) as
a function of temperature for U =4 and U =8 obtained from
8x8 lattices. (b) Parametric plot of 1/TT (in arbitrary units)
vs spin susceptibility y; for U =4 and U =8 to show that the two
quantities track each other. For a Fermi liquid all the data, for
a given U, should collapse to a single point.

moment sum rule combined with Kramers-Kronig rela-
tion. The only way that 1/7TT can then have strong tem-
perature dependence is through I';.

It is interesting to ask if the opening up of a spin gap is
accompanied by a charge gap, or a pseudo gap. In this
model the answer appears to be yes, although more de-
tailed work is necessary. The single-particle density of
states obtained via analytic continuation in Ref. [19]
gives some evidence for a gaplike structure developing
above T.. We have also studied the momentum distribu-
tion function {ng); these results will be published sepa-
rately. While {ny) is clearly broader than what would be
expected for a Fermi gas (Z=1) with thermal smearing,
it is hard to conclude (from fitting the Monte Carlo data
to various functional forms) if the observed behavior
necessarily implies a gap.

Finally, we discuss the applicability of our results to
normal state NMR experiments [6,7] on the YBCO sys-
tems; while these are the best studied systems, spin-gap
behavior is not [6(c)] restricted to them. (At least) two
issues need to be discussed: (1) the role of antifer-
romagnetism (AFM), and (2) why spin gaps are seen in
some materials, and not others.

In the 7,=60 K system (x=0.65) the Knight shift,
which probes g;, increases by a factor of 4 as T increases
from T, to 300 K, which we would identify as T,. For
the O and Y sites (where the form factors [8] filter out
the AFM contribution) 1/T T indeed tracks y; below 300
K. Our model, which has no AFM, is able to naturally
explain these spin-gap features. For the Cu site, 1/7 is
larger in magnitude and shows spin-gap behavior only
below 150 K. This would appear to require a combina-
tion of AFM fluctuations and a spin gap opening up due
to enhanced pairing correlations.

In the 7, =90 K (x=1.0) material, spin-gap behavior
is not seen (or seen over a very narrow regime). To dis-
cuss the range T, <T < T, over which these anomalies
will be seen, one needs to know how T, and T, change as
a function of doping (x). Since the attractive Hubbard
model is not a microscopic model for YBCO (e.g., half
filling in this model has nothing to do with the magnetic
insulator at x =0), we can only make qualitative re-
marks. Let us assume that once YBCO is metallic, in-
creasing x is analogous to increasing the carrier concen-
tration n in the model. For fixed U, T, increases with n,
until n==0.85, and then drops to zero at n=1.0 in 2D, as
shown in Ref. [5]. On the other hand, T, is expected to
be relatively independent of n for small n, to the extent
that one has independent pair formation, and could even
drop with increasing n due to the Pauli principle blocking
the formation of independent pairs. This crude argument
suggests why the system with the highest 7,, and highest
carrier concentration, might have the smallest window
between the pairing temperature and T..

In conclusion, we have studied the crossover in the nor-
mal state of a simple model 2D superconductor as it
evolves from a Fermi-liquid-like regime to a Bose regime.
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We find that for moderate values of the attraction (one
half the bandwidth) the normal state, even though it is a
degenerate Fermi system, already shows anomalous mag-
netic correlations. These effects are strikingly similar to
the anomalies seen in normal state NMR experiments on
several high-T. systems. Our results provide a qualitative
explanation of these experiments quite independent of the
microscopic origin of the attractive interaction.
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