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Single-Electron Charging of a Superconducting Island
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%e have calculated the quasiparticle current through a superconducting island in the Coulomb
blockade regime. The current depends strongly on the parity of the total number of free electrons in the
island. This dependence reflects the diN'erence between ground-state properties of the superconductor
with even and with odd number of electrons.
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Quantization of the electric charge Q of an isolated
conductor in units of electron charge e, g =en, where n is

the number of excess electrons in the conductor, has been
well known since the classic experiments of Millikan [1).
Recently it was realized that charge quantization leads to
a variety of new physical phenomena in systems of tunnel

junctions formed between conductors of small electric ca-
pacitance C [2,3]. These phenomena are based on the ex-
istence of the energy gaps of the order of the characteris-
tic charging energy e /2C between states with different n,
which fix the number of electrons in the conductors. The
gaps can be varied continuously, for example, by external
voltage, so that one can control tunneling of single elec-
trons to or from the conductors.

In conductors that are adequately described by the ap-
proximation of noninteracting electrons, the charge
quantization coexists in a simple way with the quantiza-
tion of electron energies [4]. Electron tunneling via a
conductor with a fixed number of electrons enables one to
observe its single-particle energy spectrum. A remark-
able example of such a spectroscopy is given by the obser-
vation of the energy spectrum of a semiconductor quan-
tum dot in the integer quantum Hall effect regime [5].

Even more interesting questions arise when charge
quantization coexists with electron-electron interactions
inside the conductor, for example, when it is a supercon-
ductor From . simple considerations (well known in the
context of pairing in nuclei —see, e.g. , Ref. [6)) based on

the BCS theory, it follows that the ground-state energy
Eo of a superconducting island with fixed number N of
free electrons depends on the parity of this number even
when it is macroscopically large [7,8]. Since the number
of paired electrons can only be even, for odd N one elec-
tron is necessarily in the unpaired state, so that the Eo for
odd N is larger than the Eo for even N by the supercon-
ducting gap h.

This means that electron transport properties of a small
superconducting island should depend on the parity of the
total number of free electrons in it. Here we consider
such an island between bulk normal electrodes that form
two tunnel junctions in series [Fig. 1(a)). Specifically, we
calculate the current through this structure in the
Coulomb blockade regime, i.e., at small bias voltages V

[2,3]. In this regime the small electric capacitance C~ of
the middle electrode provides a Coulomb energy barrier
=Ec e /2Cq for electron transfer in either of the tun-
nel junctions, so that the tunneling current is suppressed.
However, the zero-current state is metastable due to
quantum fluctuations of the charge that allow simultane-
ous transfer of electrons in both junctions without a
charging of the middle electrode The. re are two channels
of such a quantum decay of the Coulomb blockade: in-
elastic [9-11), which leads to the creation of electron-
hole excitations in the middle electrode, and elastic
[12,13). The rates y;„and y, l of these co-tunneling pro-
cesses determine the current through the double-junction
system below the Coulomb blockade threshold, and were
calculated for systems with normal electrodes [9,13].
The inelastic process dominates in systems with not too
small electrodes, and it has been observed in both metal-
lic [10] and semiconductor junctions [11].

The superconductivity strongly modifies the co-tun-
neling processes, in that the energy gap 5 creates an addi-
tional tunnel barrier which depends on the parity of the
total number N of free electrons in the superconductor.
%'hen N is even, inelastic tunneling cannot take place at
voltages below 2h/e because of the energy gap for
creation of excitations, and only elastic tunneling is al-
lowed. For odd N a quasiparticle exists unavoidably in
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FIG. l. The two systems under consideration: (a) ideal su-
perconducting electrode between normal bulk electrodes form-
ing two tunnel junctions in series; (b) superconducting "single-
electron box" with small normal inclusion. Dashed regions
denote tunnel barriers.
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Q =en p—Cq, n =n~ n2, —Cq=C~+C2.

Here n~ is the number of electrons that have tunneled
through the jth junction, C~ 2 are junction capacitances,
and p is the potential difference between the middle and
external electrodes at vanishing bias voltage V. In the
Coulomb blockade regime N depends only on p and its

parity can be found by minimization of the ground-state
energy E(N) of the superconductor (including the charg-
ing energy) with respect to N:

[e(N —N. ) —
q C,]'EN = +EpN

2Cg

6 forodd N,
p 0 for even N,

where Np is the number of electrons in the superconduc-
tor at a=0. The energy (2) as a function of p is shown

in Fig. 2. Different parabolas in this figure correspond to
different n, and the lowest-lying curve at a given p corre-
sponds to the equilibrium number of electrons in the su-

perconductor. One can see that when 6 & E, and p in-

creases, N increases by 1 and changes from odd to even at
and from even to odd at p=tr~+, where

p~
—CD/e =2p+Np(mod2) +

2 (I +5/E, ), (3)
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FIG. 2. Ground-state energy (2) of the superconducting is-

land as a function of externally induced potential diAerence p
between the island and bulk external electrodes. The upper and
lo~er sets of parabolas correspond, respectively, to odd and even
numbers of electrons in the island. The lowest parabola at a
given p determines the ground-state energy. The intersections
of parabolas give the p values at which the number of electrons
in the island is changed.

the superconductor and opens the inelastic channel as

well. However, even for odd N the inelastic tunneling is

suppressed in comparison to the normal metal, so that y;„
and y, ~ are of the same order of magnitude.

The total number N of free electrons in the supercon-

ducting electrode depends on the electrostatic energy of
the structure [2,3]:

(C(n2+C2n)),g eV
2Cg Cp

N can only be even if h, & E„and it is changed by 2 when

p passes through p~ = [2p+ 1+/Vp(mod2) le/Cq.
From now on, the calculations proceed along the same

lines as in Ref. [13]. Besides the electrostatic energy (1),
the Hamiltonian of the double-junction system includes
the Hamiltonians of the normal external electrodes, H] 2,

the superconducting middle electrode, Ho, and the terms

Hq], H~2 describing tunneling between these electrodes:

Hr/ =H~++H/, H/ =(H)+)t,

H/+ = g T~p(ukbk+t. kbk)c~.
k, m

(4)

We calculate the current associated with inelastic tun-

neling at small voltages, V) 26/e, when only existing

quasiparticles can participate in the tunneling. As we

discussed above, in the p region where the superconductor
has an even number of electrons [see Eq. (3)], there are
no quasiparticles in it at small temperatures, T &&6,, and

inelastic tunneling is suppressed. By contrast, in the p re-

gion with an odd number of electrons, one quasiparticle
should exist even at T «4 and the rate of inelastic tun-

neling y;„ is nonvanishing. We assume that y;„ is much

smaller than the energy relaxation rate in the supercon-

ductor, so that the quasiparticles (excited by the inelastic

tunneling) relax into the energy state cq at the bottom of
the energy spectrum, i.e., cq =4, and uq =tq = —,'. The

rate y;„ is given by the sum of the partial rates of electron

transfer between the energy states c~ ck q c„[9,13].
The matrix elements of these transitions are (for clarity
we omit spin indices)

M = Tqm Tkn "'qt'k(]) (z), (]) (2)

+ Tk~ Tqpg Qq0k

Ei 4 —c Ei+(@ h+,
)'/ —c

(i) (2), (~) (2)
+- Tqrn Tkn t'q&'k + . (5

Tk~ Tqn uq uk

+ (c2+g2) I/2+ c E2 Q+

Here E/ is the change of electrostatic energy (1) due to

electron transfer in the jth junction, and the tunneling

amplitudes T k were chosen to be real. The first term

describes the process in which an electron jumps into the

state cq, so that the unpaired electron in this state be-

comes paired, and then another electron jumps out of the

middle electrode creating a quasiparticle in some other
state ck. Other terms in Eq. (5) can be interpreted simi-

larly.
Next, we make two assumptions. First, we assume that

one can average over the state cq (e.g. , due to finite tem-

perature, T»8), so that the tunneling rates between this

state and external electrodes can be directly related to the

normal junction conductances G] 2. Second, we take into

Here c,c and bk, bk are the creation and annihilation

operators of, respectively, electrons in external electrodes

and quasiparticles in the middle electrode, and uk, t k are
the usual BCS factors [14]:

uk = —,
' [I+ck/(a'+cj) ' '], vk'= I —

uk .
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account that the contribution to ~(M&( of the terms that contain the products T/,
'

Tq~ is smaller by a factor b/h than

that of those that contain only absolute values of tunneling matrix elements [13],and can be neglected. Under these as-

sumptions one gets

A. G )Gpby;„=, dc dc„dck f(c )[1 —f(c„)]
4ne4

2 2 1
QP Elq E/+(c)+5') ' ' —c

l

E2+h, +c„

2

+vkv + 1

E) —6 —c~ Ez+(c +6 )' +c
P(c —c + (c&+g&) ~/z —g —cV) (6)

where f(c) is the Fermi distribution function, and 8 denotes the average spacing between spin-degenerate levels of the

middle electrode.
At small temperatures, T«eV, and voltages, eV «E~,Ez, the integrals in Eq. (6) can be calculated explicitly:

hG)GzB

16ne

1 + 1

E) —h, E2+h,
1 + 1

E)+4 E2 —h,

2

&& [(I+z)vz(2+z) —ln[1+z+vz(2+z)]}, z—=eV/A. (7)

In particular, at eV«h, Eq. (7) shows that y;» ~ V /z.

In contrast to inelastic tunneling, the rate y, ~
of elastic tunneling in the double-junction system is not sensitive to the

total number of electrons in the middle electrode. In the equations for y, ~, the superconductivity of this electrode only

changes the amplitude of the charge propagation, which now reads [compare to Eq. (11b) of the first paper in Ref. [13]]

( )
u '(c) v '(c)

+ ( 2+F2) I/2 E y (c2+g2) I/2+ c
(8)

hG)Gz8
dc dc„dcf(c ) [1 f(c»)] IF(c,c c») I'b(c» c eV) . (9)

4ze4

Since the current associated with inelastic tunneling (7) vanishes as V / at V 0, the zero-bias conductance of the

double-junction system is determined solely by elastic tunneling (9). At small temperatures, T«6, this conductance is

G,)
=

z g z z
12E/' —4 [I+g(E,/a)]}+ [g(Ez/A) —g(E)/a)] —— +h G (Gzb' 2 2 2h,

8ze / l, 2 E/(E/ —6 ) ' ' E) Ez— 2 Ei E2

/el

(10)
where

As in the normal system y, ~ depends on the character of the classical electron motion in the middle electrode. In par-

ticular, when this motion is diffusion with coefficient D, and the time of diffusion across the electrode is short,

L /D « h/6 (in other terms, the characteristic dimensions L of the electrode are small compared to the superconducting

coherence length (a=aDA/6), one gets

g(z) = ~

1 1+z + (z —1) '

( —1) ' 1+z —(z —1)
ln, forz)1,

i/2-
1 z 1+z——arctan

z(1 —z )' 1
—z

, for z &1.

Equation (10) describes, in particular, the conductance
due to electron tunneling through the energy barrier pro-
vided solely by the superconducting gap, when the charg-

ing energy is negligible, E] =E2=0:

G,(=hG)Gzb/8e h.

A comparison of Eqs. (7) and (10) shows that in contrast
to the system with normal electrodes, y;„ for a supercon-

ducting middle electrode is of the same order of magni-
tude as y, ~, and it is much smaller than in the normal sys-
tem. As a result, the total tunneling rate through the su-

perconducting electrode is smaller than the tunneling rate
in the normal system by at least a factor of b/A, which is

of the order of 10 for typical experimental parameters
[10,15,16].

The above results can be applied to the "single-electron
box" [15,16], which is a metallic island connected to a
bulk external electrode by one tunnel junction [Fig.
1(b)]. When the island is superconducting, the number
A' of electrons in it should change in accordance with Eq.
(3) as a function of the island potential p. However, ex-
periments [15,16] show that N changes periodically in w,

as in the normal system with 6=0. This means that the
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superconductivity is not ideal [15], i.e., there is a finite

subgap density of states.
One of the plausible models that can account for

subgap states is a small normal inclusion in the supercon-
ductor [Fig. 1(b)]. (Another possibility, which we do not
discuss here, is magnetic impurities. ) Let us assume that
the normal region is separated from the superconductor
by a barrier with low transparency ~T~ &&1. In this case
one can describe electron tunneling to the island as the
elastic tunneling process considered above, and calculate
the tunneling rate from Eqs. (8)-(10). An electron tun-

nels to the normal region of the island through the energy
barrier associated with the superconducting energy gap.
If the total tunnel conductance Gp between the normal
inclusion and the superconductor is large, G2 && Rg ',
where R12 =tttl/2e, the charging energy of the system
depends only on the total charge of the island, and it does
not change when the electron tunnels inside the island.
Hence, in Eqs. (8) and (9) one should take F2=0 and

e V = —E], where E] is electrostatic energy change due to
the electron tunneling to the island, E] & 0.

As above, the rate I of tunneling to the island depends
on the character of the electron motion in it. Under the
conditions of Eq. (9), we get

AG)G26r~=
8 4 (t)2 2)1/2

(12)

where e—= —E] &0. This tunneling can be interpreted
not only as a tunneling into the normal region, but also as
a direct tunneling to the superconductor, where the nor-
mal inclusion induces a finite subgap density of states
p(e):

( )
e' dr(e)

G]6 dc
AG2

8e' (a2 —e2) "2'

1996

Making use of Eq. (13) one can extend the calculations
of I (e) to the situation when the external electrode of the
single-electron box [Fig. 1(b)] is also a superconductor.

The density of states (13) is smaller than the density of
states above the gap by a factor 6/A. Nevertheless, it is

sufficiently large to account for the "normal" behavior of
the islands in experiments with a single-electron box,
since the corresponding tunneling time I, with I given

by Eq. (12), is still microscopically small for typical pa-
rameters [15,16]. In order to observe odd-even variations
of the ground-state energy (2) of a superconducting is-

land, the subgap tunneling time should be comparable to
the time of the experiment. This condition can be
satisfied if the distance d between the normal inclusion
and the tunnel barrier is much larger than the coherence
length (o. In this case, one can show [substituting Eq.
(8) into Eq. (11) of Ref. [13]] that I is exponentially
small, I eeexp[ —d/(o], so that the tunneling time I

can be macroscopically large.
In conclusion, we have calculated the rate of electron

tunneling via virtual states of a superconducting island in

the Coulomb blockade regime. This process can be re-

sponsible for a finite subgap tunneling rate into the super-
conductor with normal inclusion. For ideal superconduc-
tors, the tunneling rate depends on the parity of the total
number of free electrons in the superconductor.
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