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Laser-Induced Localization of an Electron in a Double-Well Quantum Structure
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%'e integrate numerically the time-dependent Schrodinger equation and show that a semi-infinite laser

pulse can be used to localize an electron in one of the wells of a double-well quantum structure.

PACS numbers: 71.50.+t

Grossmann, Dittrich, Jung, and Hanggi [I] have point-
ed out an interesting eA'ect of a cw laser acting on an
electron in a quartic double well. If the electron is initial-

ly localized in one of the wells, and if the laser power and
frequency are chosen appropriately, the radiation field
can prevent the electron from tunneling back and forth
between the wells.

In this Letter we investigate a more complex question:
Can a semi-infinite laser pulse act on a ground-state elec-
tron, localize it in one of the wells, and then keep it
there? Previous work [I] was concerned with maintain-
ing the localization but not with creating it and ignored
the need to turn on the laser at given time.

We study an electron with an eA'ective mass m*
=0.067m (m is the electron mass) trapped in the poten-
tial shown in Fig. 1. The parameters of the potential are
typical of a double quantum well [2]. As in the previous
study [I] we use a potential that does not allow the elec-
tron to escape from the two-well system.

The laser-electron interaction is

ezEpexp[ —(t —tp) /(2r )]cos[cot+6], t ~ t p,
V(t) =1

ezE p cos [tot + 6], l ~ t p .
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FIG. 1. The potential energy and the lowest two energy
eigenstates. The energies of the first four states are shown by
the horizontal lines. The barrier height is 240 meV and its
width is 45 A. The wells have about the same width as the bar-
rier. The potential energy is V(R) = 1000[[(D+I D

~
)/21

—[(~D~ —D)/21' +1}+exp[30(R/L ——, )I, where L is the to-
tal length of the structure ( =96n A) aud D —=cos(6.6R/L
—1.3x). The broken and solid lines show the lower two states
of the system and the horizontal lines show the lowest four
eigenenergies of the electron in the absence of the laser.

Here e and z are the electron charge and its coordinate
along an axis perpendicular to the walls of the well. The
laser parameters are the frequency co, the rise time i, and
the phase 8. The parameter Ep is specified by giving the
photon energy flux Ip =2ecEp for t & t p. If Ep is given in

statvolts/cm, c =3&10' cm/sec, and e=l/(4tr), then Ip
is obtained in ergsec 'cm . We have not attempted to
solve Maxwell equations to find the field inside the well,
which should appear in the Schrodinger equation for the
electron. For the strong fields used here Maxwell's equa-
tions are nonlinear and solving them is difficult. It is thus
customary to use Eq. (I ) and hope that the errors are not
significant as long as the laser does not excite the elec-
tromagnetic resonances of the structure.

The results reported in what follows are obtained by
solving numerically [3] the time-dependent Schrodinger
equation for the Hamiltonian defined above. A brief
description of the strategy pursued is instructive. We
start with the initial state ~L) =(~I) —~2))/2' which is

localized in the left well.
~
I) and ~2) are the two lowest-

energy eigenstates of the system in the absence of the
laser. We drive the system with semi-infinite square laser
pulse [i.e., r =0 in Eq. (I)]. By numerical experimenta-
tion we find the laser power, frequency, and phase which
will keep the electron in the left well. We find that, as in

the case of a quartic double well [I], an electron initially
located in the left well is maintained there by the action
of the laser. At a laser intensity Ip=347.22 MW/cm 2

and a phase 6=1.5z, localization is maintained for as
many as 23 photon energies ranging from 26.28 to 1560.8
cm ' (3.258-193.511 meV). In most of these cases the
probability of finding the electron in the left well is never
less than 70% and its average over time exceeds 80%,
Prior work [I] used B=tr/2 [i.e., it used sin(cot) for the
time dependence of the field] and did not comment on the
fact that the results are dependent on the laser phase.
We find that the quality of localization is good (and the
same) for 6'=1.5tr and 6'=0.5tr and is poor (but still over
50%) for 6=0 and S=tr.

Once we find the conditions (laser power, frequency,
and phase) which maintain the initially localized electron
in its well, we start a new calculation in which the elec-
tron is initially in an eigenstate of the bare (i.e., no laser)
double well and is exposed to a semi-infinite laser pulse
with a finite rise time (i.e., r & 0). We use a pulse inten-

sity and frequency for which the cw laser is capable of
maintaining the electron localization (in a calculation in
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FIG. 2. The time dependence of the probability Pt(r) that
the electron is in the left well. The initial state is the bare
ground state I 1&. The optical field is given by Eq. (1). The
laser power when the pulse amplitude becomes constant is

Io =347.22 M Wjcm 2. The photon energy is (a) 17.18 me V
(138.57 cm ') and (b) 8.295 meV (66.9 cm '). Depending on
the rise time of the pulse the electron is localized in the left well

(upper curves) or in the right one (lower curves).

which the electron is initially localized). The phase b
= —rotrj~ 2nrr is chosen to give a maximum electric field
t =tn. Then, we pick a pulse rise time r and we calcu-
late, by solving the time-dependent Schrodinger equation,
the wave function of the electron and monitor the time
evolution of the probability that the electron is in the left
well. We vary z until we find a value for which the laser
localizes the electron in a well and then keeps it there.

In Fig. 2 we show the probability PL(t) that the elec-
tron is in the left well, as a function of time. The electron
started in the left well. The pulse properties are indicated
in the figure. Let us examine the upper curve of Fig.
2(a). The electron is initially (i.e., at t =0) in the ground
state and the wells are occupied with equal probability.
The laser amplitude is a Gaussian which has a width r,
reaches a maximum at t =tn =3 Sr, an. d then levels off to
a constant value. The value of z for the upper curve in

Fig. 2(a) is 585 fs. In the early times, when the laser in-

tensity rises, PL(t) undergoes wild oscillations and the
electron moves from one well to another. When the pulse

settles to a constant value, PL(t) oscillates with a small

amplitude around a mean value larger than 0.9. The
period of these small oscillations is the laser frequency.
The second graph in Fig. 2(a) shows that if we change
the rise time from z =585 fs to z =540 fs, but keep all
other parameters unchanged, the electron will be local-
ized in the right well. We have found, for Ip=347.22
MW/cm and ra=138.57 cm ', about 20 values of the
rise time z for which the electron is localized in one of
the wells. Fewer rise times leading to localization were
found when the laser frequency is 66.9 cm ', and none
for frequencies higher than 138.57 cm

The ability of the laser to localize the electron depends
on the phase 8 of the laser electric field. For laser param-
eters (i.e., rise time, frequency, and power) that localize
the electron in the left well for b = —roro~ 2nrr, the elec-
tron is localized in the right well if b= —rota~ (2n
+1)z; if BW —roto+ nrr, the localization is very poor.
Note that a change of phase by rr is equivalent to a
change in the sign of z [see Eq. (1)] hence a conversion of
left into right; this explains why an electron localized in

one well for a phase b is localized in the other well if the
phase is b+ z. This phase dependence may appear
surprising because a change of phase in the time-
dependent Schrodinger equation is equivalent to a change
of time origin. If the laser amplitude is constant the
choice of time origin is irrelevant. However, such a con-
stant amplitude is physically impossible: The laser must
start acting on the system at some time and the outcome
will depend on the laser phase which controls the initial
direction of the force acting on the electron.

Unless one works at a very low temperature the excited
state I2) is initially populated. For this reason we have
also investigated the eff'ect of a semi-infinite pulse in the
case when the electron starts in I2). We find that a pulse
having a set of parameters that localize an electron start-
ing in I 1) in the left well will localize an electron starting
in I2) in the right well. If the same pulse acts on an elec-
tron in thermal equilibrium the population in the left well
will exceed that in the right one by a Boltzmann (or a
Fermi) factor.

The extent of the trapping is rather sensitive to the pa-
rameters of the pulse. As illustrated by Fig. 2, relatively
small changes in r [e.g. , 40 fs for Fig. 2(a) and 147 fs in

Fig. 2(b)] can change the localization from the left to the
right well ~ Small deviations from the frequency required
to localize the electron in the left well cause Pr. (t) to drift
slowly from about 0.9 to about 0.1 and back. In calcula-
tions using a photon energy close to 17.18 meU the period
of this drift is of order I/pro, where pro is the diA'erence
between the photon frequency used in the calculation and
the frequency (i.e., 17.18 meU) at which the localization
is achieved. At lower photon energies this drift is faster:
If the laser frequency is close to 104.27 meV the drifting
period is about 3 times longer than I/hen.

We have also calculated the dipole p(t) =(@,tIII@,r)
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frequency) and the other at neo+10.7 cm ', where n is
an integer. There are several striking features. The am-
plitudes of the terms in the progression neo are larger for
n even. The intensity of the harmonics does not decay
with n as one would expect if high-order perturbation
theory had any validity. For example, the intensity of the
22nd harmonic is a third of that of the Rayleigh (i.e.,

having the same frequency as the incident laser) peak.
Similar results are obtained for a laser frequency of
138.57 cm ', a power of 347.22 MW/cm, and a rise
time that leads to electron localization [Fig. 3(b)]. We
see two progressions at mo and nto —43.37 cm ' (or
nto+95. 2 cm '). There are substantial differences be-
tween these two cases but we still see high harmonics (the
peak at 12' is about one-fourth of the largest peak which
appears at the frequency of the incident light).
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peak positions and heights in p(Q) (see the
in the text). The calculations in (a) and (b)
for the parameters used in Figs. 2(b) and 2(a).

of the sample, where iO, t) is the wave function of the
electron at time t. In Fig. 3 we show

p (n ) = „dte '"'W(t t ')p (t) . —

The width and the center t' of the Gaussian window func-
tion W are chosen to cut oA' the values of p(t) at times
when the pulse intensity is still rising. p(Q) has peaks of
Gaussian shape (i.e., the transform of the window func-
tion) centered at the frequencies at which the Fourier
components of p(t) are nonzero. In Fig. 3 we show only
the positions and heights of these peaks. The parameters
for the laser pulse (indicated in the figure) are those that
lead to localization if the initial state was the bare ground
state. The transform in Fig. 3(a) has a large number of
peaks forming two progressions: one at neo (co is the laser

' Address for correspondence.
[1] F. Grossmann, T. Dittrich, P. Jung, and P. Hanggi, Phys.

Rev. Lett. 67, 516 (1991);F. Grossmann, T. Dittrich, and
P. Hanggi, Physica (Amsterdam) 175B, 293 (1991); F.
Grossmann and P. Hanggi, Z. Phys. B 85, 315 (1991);F.
Grossmann, P. Jung, T. Dittrich, and P. Hanggi, Euro-
phys. Lett. 18, 571 (1992); related work was also per-
formed by D. Neuhauser, "Coherent Destruction of
Tunneling —Physical Origin" (to be published); M. Hol-

thaus, "Pulse-Shape-Controlled Tunneling in a Laser
Field" (to be published).

[2l G. Bastard, Wave Mechanics Applied to Semiconductor
Heterostructures (Halsted, New York, 1988); C. W. J.
Beenakker and R. Van Houten, in Semiconductor Het-
erostructures and Ãanostructures, edited by G. Ehren-
reich and D. Turnbull (Academic, New York, 1991).

[3l J. A. Fleck, Jr. , J. R. Morris, and M. D. Feit, Appl. Phys.
10, 129 (1976); M. D. Feit, J. A. Fleck, Jr, , and A.
Steiger, J. Comput. Phys. 47, 412 (1982); M. D. Feit and
J. A. Fleck, Jr. , J. Chem. Phys. 78, 2578 (1984).

1988


