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We show that an ab initio molecular-dynamics scheme based on Vanderbilt ultrasoft pseudopo-
tentials and a plane-wave expansion for the electronic orbitals allows one to perform accurate cal-
culations for large systems containing tightly bound d-electron states. We use a novel real-space
double-grid technique to deal efficiently with the localized augmentation functions in the core re-
gion. We apply our scheme in a full molecular-dynamics simulation of liquid copper at a temperature
of 1500 K and find structural and dynamical properties that are in excellent agreement with exper-
imental data.

PACS numbers: 71..10.+x, 61.20.3a, 61.25.Mv, 71.25.Lf

The ab initio molecular-dynamics (MD) scheme of
Car and Parrinello (CP) [1] has been very useful to
study structural, dynamical, and electronic properties
of large atomic aggregates that model low-symmetry
systems such as clusters, surfaces, liquid, and amor-
phous materials [2]. This method allows one to perform
parameter-free MD simulations in which the forces acting
on the atoms are derived from the electronic ground state
within density-functional theory This a. pproach has been
mostly used in connection with a plane-wave pseudopo-
tential (PP) treatment of the valence electrons. This has
so far prevented the application of this method to the
tightly bound d-electron states of noble and transition
metals, which in standard norm-conserving PP formu-
lations [3] require a prohibitively large number of plane
waves.

To date the most widely used approaches for accu-
rate first-principles calculations of the electronic struc-
ture of d-band metals are based on techniques such
as the linearized-augmented-plane-wave (LAPW) or the
linearized-muffin-tin-orbital (LMTO) methods [4]. Al-

though in principle it is possible to compute accurate
interatomic forces within these schemes [5,6], the compu-
tational demand of such calculations has so far prevented
direct application to MD simulations. As a consequence.
realistic structural models of disordered noble and tran-
sition metal systems could only be constructed by means
of empirical or semiempirical interatomic potentials [7,8].
However, only in the context of ab initio MD is the subtle
interplay between interatomic forces and electronic prop-
erties treated in a fully self-consistent way. This level of
sophistication is still missing in the case af noble and
transition metals.

Recently our group has developed an efIIcient ab initio
MD scheme based on plane-wave techniques in connec-

tion with the ultrasoft PP's proposed by Vanderbilt [9]
to deal with strongly localized electron states [10]. This
approach has been successfully applied to study ice under
high pressure [11].

In this Letter, we further extend this scheme to deal
with the tightly bound d-electron states of noble and
transition metals. In order to achieve this result we im-
prove the formulation in several ways, the most impor-
tant being the introduction of a novel real-space double-
grid technique to treat the rapidly varying localized aug-
mentation functions in the core region. We first test the
accuracy of our technique with a calculation of the Cu
dimer. Then, we show that large systems can be afforded
by performing the first ab initio MD simulation for a sys-
tern like liquid copper (I-Cu), whose electronic states are
among the most dificult to treat in a plane-wave PP
formulation. Our simulated liquid sample has structural
and dynamical properties that are in excellent agreement
with experimental data.

In the Vanderbilt PP scheme one works with optimally
smooth pseudo wave functions Q„(r), which coincide with
the true valence orbitals outside a given core radius r„.,

Within the core region, the difFerence between true and
pseudo wave functions is described in terms of localized

augmentation functions Q,s(r), so that the total valence
electron density can be written as

Here the indices i and j denote an atomic reference state
and p, ~

= g„(P,lg„)(g„[P1),where the P, (r) are local-
ized functions that span the core space. In this scheme
the augmentation functions Q, , (r) are the only functions
which still require a relatively high plane-wave cutofF. In
the case of first row elements such as oxygen, a sufII-
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ciently accurate representation of the charge density (1)
could be achieved by smoothening the Q,i(r) within an
inner core region (r;„(r, ) in such a way as to preserve
the lowest moment of the electronic charge and by us-

ing a Fourier cutoff equal to 4 times the energy cutoff
of the pseudo wave functions. The above procedure is
not sufBcient for a d-electron element like Cu, since in
this case the augmentation functions Q,~(r) are a dom-
inant contribution to the electron density and require a
considerably higher Fourier cutoff. Thus, we propose the
following: (i) The functions Q,~(r) are decomposed in
terms of functions of total angular momentum L, which
are then smoothened using L-dependent inner radii, in
such a way as to preserve all the moments of the charge
distribution. (ii) Two diferent FFT grids are used: a
coarse grid which is defined by 4 times the cutoff of the
pseudo wave functions as in conventional plane-wave cal-
culations, and a significantly denser grid whose spatial
mesh is defined by the large Fourier cutoff required by
the Q,~(r). (iii) We adopt a real-space formulation to
exploit the fact that the Q,~(r) are localized within the
core region defined by r, .

Point (i) allows an accurate smoothening of the Q,~ (r)
and reduces the need for high Fourier components, since
these are mainly related to the high-L components of
the Q,~ for which one can use larger r;„. Points (ii) and
(iii) allow us to use a significantly larger cutoff for the

Q,~ (r) without significantly increasing the computational
cost. The coarse grid is used to calculate the smooth part
of the electron density [the first term on the right-hand
side of Eq. (1)] and to apply the full local potential to
the pseudo wave functions. The dense grid is used to
evaluate the Q,~(r) in real space. In practice this is done

by performing Fourier interpolations of the Q,~ (r) inside
small boxes, which contain the core region and move with
the ions. The number of operations needed for these
interpolations does not depend on the size of the system
but only on the size of the core region. Fourier transforms
on the dense grid covering the entire simulation cell are
only used to compute the total Hartree potential and to
transfer functions such as the exchange and correlation
potential, the smooth part of the charge density, and
the full local potential from real to reciprocal space or
vice versa. The above procedure not only significantly
reduces the total number of operations associated with
the Q;~ but also has a total cost that scales only linearly
with size [neglecting the log(size) factor in the FFT's],
instead of quadratically as it would result if the real-space
formulation were not used.

In order to illustrate our method we apply it to Cu,
which we take as a prototype element with very local-
ized d-electron states. We constructed a nonrelativistic
ultrasoft PP for Cu, using two reference energies for each
angular momentum (l = 0, 1,2) in a slightly excited elec-
tronic valence configuration 3d 4s 4p . The core radii
were taken to be r„=2.1,r,~ = 2.4, r,g = 2.0 a.u. , while
inner radii r;„ranging from 0.6 a.u. (for L = 0) up to

TABLE I. Bonding length r„cohesive energy D„and
vibrational frequency u, for Cup.. experimental value [13),
as calculated with a real-space method (RS) [14], with
a norm-conserving PP (NCPP) [15], and in the present
work [27]. The binding energies are given with respect to
non-spin-polarized atoms.

Experiment
RS
Ncpp
Present

r. (a.u. )

4.195
4.124
4.07
4.12

D, (ev)

1.97
3.35
3.18
3.14

u), (cm ')
264.5
292.0
295.1
277.5

1983

1.2 a.u. (for L = 4) were used. Exchange and correla-
tion effects were treated within LDA using Perdew and
Zunger's interpolation formulas [12]. The above choice of
parameters allows one to achieve very good convergence
using an energy cutoff of only 18 Ry for the pseudo wave
functions and of 200 Ry for the augmentation functions
Q,~ (r). We checked the accuracy of our technique by per-
forming calculations for a Cu dimer using a periodically
repeated simple cubic cell of side 16 a.u. The results are
reported in Table I, where they are compared with exper-
iment [13],with an accurate calculation using a real-space
method [14], and with a well converged calculation using
norm-conserving PP's [15]. The agreement between the
three calculations in Table I is extremely good showing

(i) the accuracy of the PP's, and (ii) the good conver-
gence of the calculations. We remark that while a cutoff
of 300 Ry was used for the pseudo wave functions in Ref.
[15], only an 18-Ry cutoff was used in the present cal-
culation. A plane-wave cutoff similar to ours would be
needed in a LAPW calculation for the same system.

Next, in order to simulate l-Cu, we considered a rela-
tively large system consisting of a periodically repeated
simple cubic cell of side a = 16.467 a.u. containing 50
atoms [16] at a density corresponding to the experimen-
tal density of l-Cu at the melting point (p = 7.97 g/cms
at TM = 1356 K [17]). During the MD simulation, we let
the atomic coordinates and the electronic pseudo wave
functions at the I' point of the supercell evolve accord-
ing to the CP equations of motion in the presence of two
Nose-Hoover thermostats [18], having masses Q„and Q„
associated with the ions and with the electrons, respec-
tively [19]. The ionic thermostat was used to keep the
average ionic temperature of the simulation equal to a
preset value T, whereas the electronic thermostat wss
used to keep the total classical kinetic energy of the elec-
tronic degrees of freedom always very close to a preset
value Ek;„,o. Ek;„o must be much smaller than the to-
tal ionic kinetic energy, but at the same time it must
be large enough to allow the classical electronic degrees
of freedom of mass p to follow adiabatically the motion
of the ions. In this way long MD simulations do not
require subsequent electronic reoptimizations, since the
two thermostats continuously extract from the electrons



VOVVMV 69, NUMBFR 13 PH YSICAL REVIE% LETTERS 28 SVPTE, M BUR 1992

and give back to the ions the energy that is transferred
from the latter to the former, due to a nonperfectly adi-
abatic CP evolution. As a consequence the departure of
the electrons from the Born-Oppenheirner (BO) surface
does not increase with time. This is particularly impor-
tant to simulate metallic systems that are characterized
by a persistent and non-negligible transfer of energy from
the ionic to the electronic degrees of freedom.

In our simulation we used a time step of 10 a.u. (0.24

fs) and masses p = 1500 a.u. , Q„= 5 x 10s a, u. , and

Q, = 7.5 x 10 a.u. , respectively. Eq;„o was set equal to
0.95 eV, i.e. , about a tenth of the average ionic kinetic
energy and only slightly larger than the value that, ac-
cording to a simple estimate given in Ref. [19],would be
necessary to follow adiabatically the ionic motion. With
this choice of parameters, the global constant of motion
[18, 19] is found to drift at a rate of 0.012 meV/ps, which
is negligible on the time scale of our simulation.

Initially the atoms were given a simple cubic arrange-
ment in which 14 vacancies were randomly created. After
minimizing the electronic energy, the system was first al-
lowed to evolve microcanonically. Then the electronic
energy was reminirnized and the system was coupled to
the thermostats. The externally set temperature was

gradually decreased from the naturally acquired value
of about 2000 K to the chosen value of 1500 K. At the
same time we observed a rapid evolution of the system
towards more closely packed configurations. This is not
surprising since the starting atomic configuration had an
average coordination of less than 6 which is rather un-

physical for bulk Cu. After allowing for equilibration we

let the system evolve at T = 1500 K for a total time of
2 ps during which we measured various physical quanti-
ties. We checked that the deviation from the BO surface
did not increase with time. As a matter of fact, at two

atomic configurations along the MD trajectory, one af-
ter approximately 1 ps and the other at the very end of
the simulation, the total (potential) energy of the system
of 50 atoms was found to lie above the BO surface by
0.62 and 0.53 eV, respectively. Notice that a total en-

ergy shift of about 0.5 eU, or, equivalently, of less than
0.002 eV per electron state, is substantially smaller (by
about a factor of 20) than the total ionic kinetic energy
and is also smaller (by a factor of 2—3) than the aver-

age fluctuation of the ionic kinetic energy in our sample.
This is a typical situation in ab initio MD simulations
[20]. As an additional check that the electrons remain
very close to the instantaneous ground state all along
the simulation, we compared the occupied single-particle
eigenvalues obtained from the CP dynamics with those
obtained from energy minimization and found only neg-
ligible differences.

In Fig. 1 we report the radial correlation function g(r)
of 1-Cu as obtained from our simulation and we compare
it with experimental data taken at two different temper-
atures [17], one below and one above T = 1500 K used
in our calculation. Notice that in spite of the small size

1984
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FIG. 1. Radial pair correlation function for liquid Cu.
The histogram is a result of the present theory. Experimen-
tal data are from Ref. [17]. Theory: peaks at 4.62 a.u. and
at 8.45 a.u. , coordination number equal to 12.5. Experiment
(1413 K): peaks at 4.86 a.u. and at 9.07 a.u. , coordination
number equal to 11.3,

of our simulation box (a/2 = 8.23 a.u. ) we have been
able to measure the correlation function up to r = 10
a.u. , using the technique of Ref. [21] to include data ob-
tained from the corners of the cube. This allows us to
fully include the second peak of g(r) in our measurement.
Overall the agreement between theory and experiment is

excellent, with only a few percent underestimate of the
binding distances in the simulation data, an effect that
was already present in the dimer calculation. We no-

tice that, although a good radial correlation function for
l-Cu can also be obtained with empirical methods, such
as, e.g. , the embedded atom approach [7], the good result
found in our parameter-free calculation indicates that our
PP LDA scheme gives an accurate description of the po-
tential energy surface of t-Cu.

Not only static but also dynamic properties can be
obtained from our simulation. In particular we have cal-
culated the self-diffusion coeKcient D by analyzing the
mean squared displacement of the ions in our sample.
We find D = (2.8 + 0.2) x 10 m /s, to be compared
with experimental values of D = 4.6 x 10 s m2/s and
of D = 6.0 x 10 s m2/s at T = 1413 and 1533 K, re-

spectively [22], which we consider a satisfactory agree-
ment, in view of the strong temperature dependence of
D. We should remark that although our simulated sam-
ple shows good liquidlike behavior, we do not know the
precise value of its melting point.

Finally, we report in Fig. 2 the electronic density of
states of t-Cu as obtained from the calculated single-
particle eigenvalues. The average was taken over 150
configurations generated at regular intervals during the
MD run for what concerns the occupied states, while for
the unoccupied states we have only used the two config-
urations at which we performed the electronic minimiza-
tions referred to above. In the same figure we also report
a calculation of the density of states of crystalline Cu
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FIG. 2. Density of states vs energy for liquid Cu as ob-
tained in the present theory. The dotted line is the density of
states of crystalline Cu (from Ref. [23]). The Fermi level is at
zero energy.

from Ref. [23]. Since the density of states for the liquid
is obtained with a one-point (I') sampling of the Bril-
louin zone, it is not expected to be accurate. However,
the metallic character of the system is evident from the
absence of a gap at the Fermi level [24]. Overall, the elec-
tronic density of states appears to change only slightly
when going from the crystal to the liquid, in agreement
with early photoemission data for l-Cu [25] and with re-

cent theoretical calculations for liquid transition metals
[26].

In conclusion, we have shown that ab initio MD sim-
ulations for large systems containing d electron elements
are feasible. This will allow the study of systems such
as transition metal clusters, liquid and amorphous no-
ble and transition metals, metallic surfaces, or transi-
tion metal oxides, using the same advanced techniques
to treat structural relaxation efFects that have been so
far available only in the case of simple s-p bonded sys-
tems.
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